cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A281064 Values of x such that x^2 = 5*y^2 + 11, where x and y are positive integers.

This page as a plain text file.
%I A281064 #10 May 28 2020 12:50:24
%S A281064 4,16,56,284,1004,5096,18016,91444,323284,1640896,5801096,29444684,
%T A281064 104096444,528363416,1867934896,9481096804,33518731684,170131379056,
%U A281064 601469235416,3052883726204,10792927505804,54781775692616,193671225869056,983019078740884
%N A281064 Values of x such that x^2 = 5*y^2 + 11, where x and y are positive integers.
%C A281064 The corresponding values of y are in A082651.
%H A281064 Colin Barker, <a href="/A281064/b281064.txt">Table of n, a(n) for n = 1..1000</a>
%H A281064 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (0,18,0,-1).
%F A281064 a(n) = ((-2-r)^n*(r-5) + (5+r)*(r-2)^n + (15+7*r)*(r+2)^n + (2-r)^n*(7*r-15)) / (4*r) where r=sqrt(5).
%F A281064 a(n) = 18*a(n-2) - a(n-4) for n>3.
%F A281064 G.f.: 4*x*(1 - x)*(1 + 5*x + x^2) / ((1 + 4*x - x^2)*(1 - 4*x - x^2)).
%e A281064 56 is in the sequence because 56^2 = 3136 = 5*25^2+11.
%t A281064 LinearRecurrence[{0,18,0,-1},{4,16,56,284},30] (* _Harvey P. Dale_, May 28 2020 *)
%o A281064 (PARI) Vec(4*x*(1 - x)*(1 + 5*x + x^2) / ((1 + 4*x - x^2)*(1 - 4*x - x^2)) + O(x^30))
%Y A281064 Cf. A082651.
%K A281064 nonn,easy
%O A281064 1,1
%A A281064 _Colin Barker_, Jan 14 2017