This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A281064 #10 May 28 2020 12:50:24 %S A281064 4,16,56,284,1004,5096,18016,91444,323284,1640896,5801096,29444684, %T A281064 104096444,528363416,1867934896,9481096804,33518731684,170131379056, %U A281064 601469235416,3052883726204,10792927505804,54781775692616,193671225869056,983019078740884 %N A281064 Values of x such that x^2 = 5*y^2 + 11, where x and y are positive integers. %C A281064 The corresponding values of y are in A082651. %H A281064 Colin Barker, <a href="/A281064/b281064.txt">Table of n, a(n) for n = 1..1000</a> %H A281064 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (0,18,0,-1). %F A281064 a(n) = ((-2-r)^n*(r-5) + (5+r)*(r-2)^n + (15+7*r)*(r+2)^n + (2-r)^n*(7*r-15)) / (4*r) where r=sqrt(5). %F A281064 a(n) = 18*a(n-2) - a(n-4) for n>3. %F A281064 G.f.: 4*x*(1 - x)*(1 + 5*x + x^2) / ((1 + 4*x - x^2)*(1 - 4*x - x^2)). %e A281064 56 is in the sequence because 56^2 = 3136 = 5*25^2+11. %t A281064 LinearRecurrence[{0,18,0,-1},{4,16,56,284},30] (* _Harvey P. Dale_, May 28 2020 *) %o A281064 (PARI) Vec(4*x*(1 - x)*(1 + 5*x + x^2) / ((1 + 4*x - x^2)*(1 - 4*x - x^2)) + O(x^30)) %Y A281064 Cf. A082651. %K A281064 nonn,easy %O A281064 1,1 %A A281064 _Colin Barker_, Jan 14 2017