cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A281065 Decimal expansion of the greatest minimum separation between ten points in a unit square.

Original entry on oeis.org

4, 2, 1, 2, 7, 9, 5, 4, 3, 9, 8, 3, 9, 0, 3, 4, 3, 2, 7, 6, 8, 8, 2, 1, 7, 6, 0, 6, 5, 0, 2, 9, 8, 0, 9, 1, 6, 1, 0, 3, 6, 7, 2, 1, 4, 0, 7, 2, 6, 1, 2, 2, 3, 2, 1, 6, 5, 4, 3, 7, 5, 4, 5, 4, 0, 6, 5, 1, 7, 2, 9, 3, 9, 2, 2, 4, 3, 7, 7, 9, 1, 5, 3, 6, 3, 2, 9, 0, 6, 8, 8, 4, 7, 1, 9, 2, 4, 6, 2, 4, 3, 9
Offset: 0

Views

Author

Jeremy Tan, Jan 14 2017

Keywords

Comments

The corresponding values for two to nine points have simple expressions:
N ... d_min
2 ... sqrt(2) (A002193)
3 ... sqrt(6) - sqrt(2) (A120683)
4 ... 1 (A000007)
5 ... sqrt(2) / 2 (A010503)
6 ... sqrt(13) / 6 (A381485)
7 ... 4 - 2*sqrt(3) (A379338)
8 ... sqrt(2 - sqrt(3)) (A101263)
9 ... 1 / 2 (A020761)
In contrast, the value for ten points has a minimal polynomial of degree 18.
The smallest square ten unit circles will fit into has side length s = 2 + 2/d = 6.74744152... and the maximum radius of ten non-overlapping circles in the unit square is 1 / s = 0.14820432...

Examples

			0.421279543983903432768821760650298...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 8.2, p. 487.

Crossrefs

Cf. A281115 (10 points in unit circle), A000007, A002193, A010503, A020761, A101263, A120683, A379338, A381485.

Programs

  • Mathematica
    RealDigits[x /. FindRoot[x^Range[18, 0, -1].{1180129, -11436428, 98015844, -462103584, 1145811528, -1398966480, 227573920, 1526909568, -1038261808, -2960321792, 7803109440, -9722063488, 7918461504, -4564076288, 1899131648, -563649536, 114038784, -14172160, 819200}, {x, 2/5}, WorkingPrecision -> 120]][[1]] (* Amiram Eldar, Feb 24 2025 *)
  • PARI
    my(p = Pol([1180129, -11436428, 98015844, -462103584, 1145811528, -1398966480, 227573920, 1526909568, -1038261808, -2960321792, 7803109440, -9722063488, 7918461504, -4564076288, 1899131648, -563649536, 114038784, -14172160, 819200])); polrootsreal(p)[1]

Formula

d is the smallest real root of 1180129*d^18 - 11436428*d^17 + 98015844*d^16 - 462103584*d^15 + 1145811528*d^14 - 1398966480*d^13 + 227573920*d^12 + 1526909568*d^11 - 1038261808*d^10 - 2960321792*d^9 + 7803109440*d^8 - 9722063488*d^7 + 7918461504*d^6 - 4564076288*d^5 + 1899131648*d^4 - 563649536*d^3 + 114038784*d^2 - 14172160*d + 819200.