cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A281081 Expansion of Product_{k>=0} (1 + x^(3*k*(k+1)/2+1)).

This page as a plain text file.
%I A281081 #6 Feb 16 2025 08:33:39
%S A281081 1,1,0,0,1,1,0,0,0,0,1,1,0,0,1,1,0,0,0,1,1,0,0,1,1,0,0,0,0,1,1,1,1,1,
%T A281081 1,1,1,0,0,0,0,1,1,0,0,1,2,1,0,0,2,2,0,0,1,1,1,1,0,0,2,2,0,0,2,3,1,0,
%U A281081 1,2,1,0,0,0,1,2,1,1,2,2,1,1,1,1,1,1,1,2,2,1,1,1,1,1,1,2,3,2,1,2,3,1,0,0,1,2
%N A281081 Expansion of Product_{k>=0} (1 + x^(3*k*(k+1)/2+1)).
%C A281081 Number of partitions of n into distinct centered triangular numbers (A005448).
%H A281081 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/CenteredTriangularNumber.html">Centered Triangular Number</a>
%H A281081 <a href="/index/Ce#CENTRALCUBE">Index entries for sequences related to centered polygonal numbers</a>
%H A281081 <a href="/index/Par#partN">Index entries for related partition-counting sequences</a>
%F A281081 G.f.: Product_{k>=0} (1 + x^(3*k*(k+1)/2+1)).
%e A281081 a(46) = 2 because we have [46] and [31, 10, 4, 1].
%t A281081 nmax = 105; CoefficientList[Series[Product[1 + x^(3 k (k + 1)/2 + 1), {k, 0, nmax}], {x, 0, nmax}], x]
%Y A281081 Cf. A005448, A024940, A279278, A280950, A281082, A281083, A281084.
%K A281081 nonn
%O A281081 0,47
%A A281081 _Ilya Gutkovskiy_, Jan 14 2017