cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A281550 Number of 2 X 2 matrices with all elements in 0..n such that the sum of the elements is prime.

Original entry on oeis.org

0, 10, 46, 114, 234, 458, 826, 1370, 2090, 3010, 4174, 5658, 7534, 9930, 12954, 16662, 21074, 26242, 32246, 39182, 47186, 56386, 66874, 78798, 92290, 107434, 124282, 142942, 163550, 186266, 211250, 238626, 268526, 301134, 336610, 375086, 416678, 461454, 509434, 560662, 615182, 673106
Offset: 0

Views

Author

Indranil Ghosh, Jan 23 2017

Keywords

Examples

			For n = 4, a few of the possible matrices are [0,4;2,1], [0,4;3,0], [0,4;3,4], [0,4;4,3], [1,0;0,1], [1,0;0,2], [1,0;0,4], [1,0;1,0], [1,0;1,1], [1,0;1,3], [2,2;3,0], [2,2;3,4], [2,2;4,3], [2,3;0,0], [2,3;0,2], [3,4;3,3], [3,4;4,0], [3,4;4,2], [4,0;0,1], [4,0;0,3], [4,0;1,0], ... There are 234 possibilities.
Here each of the matrices M is defined as M = [a,b;c,d] where a = M[1][1], b = M[1][2], c = M[2][1], d = M[2][2]. So, a(4) = 234.
		

Crossrefs

Programs

  • PARI
    a(n)=my(X=Pol(vector(n+1,i,1))+O('x^(4*n)),Y=X^4,s); forprime(p=2,4*n, s+=polcoeff(Y,p)); s \\ Charles R Greathouse IV, Feb 15 2017
  • Python
    from sympy import isprime
    def t(n):
        s=0
        for a in range(0, n+1):
            for b in range(0, n+1):
                for c in range(0, n+1):
                    for d in range(0, n+1):
                        if isprime(a+b+c+d)==True:
                            s+=1
        return s
    for i in range(0, 201):
        print(str(i)+" "+str(t(i)))
    

Formula

a(n) = Sum_{p prime} Sum_{k=0..4} (-1)^k * binomial(4, k) * binomial(p+3-k*(n+1), 3). - David Radcliffe, Jun 13 2025
Showing 1-1 of 1 results.