A281113 Number of twice-factorizations of n. Number of ways to choose a postpositive factorization of each part of a postpositive factorization of n.
1, 1, 3, 1, 3, 1, 6, 3, 3, 1, 9, 1, 3, 3, 15, 1, 9, 1, 9, 3, 3, 1, 23, 3, 3, 6, 9, 1, 12, 1, 28, 3, 3, 3, 32, 1, 3, 3, 23, 1, 12, 1, 9, 9, 3, 1, 58, 3, 9, 3, 9, 1, 23, 3, 23, 3, 3, 1, 41, 1, 3, 9, 66, 3, 12, 1, 9, 3, 12, 1, 84, 1, 3, 9, 9, 3, 12, 1, 58, 15, 3
Offset: 2
Keywords
Examples
The a(20)=9 twice-factorizations are: ((20)), ((2*10)), ((4*5)), ((2*2*5)), ((2)*(10)), ((2)*(2*5)), ((4)*(5)), ((2*2)*(5)), ((2)*(2)*(5)). Twice-factorizations of 32 organized by composite: ((2)(2)(2)(2)(2)) ((2)(2)(2)(2 2)) ((2)(2)(2 2 2)) ((2)(2 2)(2 2)) ((2)(2 2 2 2)) ((2 2)(2 2 2)) ((2 2 2 2 2)) ((2)(2)(2)(4)) ((2)(2)(2 4)) ((2)(2 2)(4)) ((2)(4)(2 2)) ((2)(2 2 4)) ((2 2)(2 4)) ((4)(2 2 2)) ((2 2 2 4)) ((2)(2)(8)) ((2)(2 8)) ((2 2)(8)) ((2 2 8)) ((2)(4)(4)) ((2)(4 4)) ((4)(2 4)) ((2 4 4)) ((2)(16)) ((2 16)) ((4)(8)) ((4 8)) ((32)). Twice-factorizations of 32 organized by domain: ((2)(2)(2)(2)(2)) ((2)(2)(2)(2 2)) ((2)(2)(2)(4)) ((2)(2)(2 2 2)) ((2)(2)(2 4)) ((2)(2)(8)) ((2)(2 2)(2 2)) ((2)(2 2)(4)) ((2)(4)(2 2)) ((2)(4)(4)) ((2)(2 2 2 2)) ((2)(2 2 4)) ((2)(2 8)) ((2)(4 4)) ((2)(16)) ((2 2)(2 2 2)) ((2 2)(2 4)) ((2 2)(8)) ((4)(2 2 2)) ((4)(2 4)) ((4)(8)) ((2 2 2 2 2)) ((2 2 2 4)) ((2 2 8)) ((2 4 4)) ((2 16)) ((4 8)) ((32)).
Links
- Michael De Vlieger, Table of n, a(n) for n = 2..30030
- Michael De Vlieger, Indices of records in A281113.
Crossrefs
Programs
-
Mathematica
postfacs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[postfacs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]]; twicefacs[n_]:=Join@@Tuples/@Map[postfacs,postfacs[n],{2}]; Table[Length[twicefacs[n]],{n,2,24}]
Comments