cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A281115 Decimal expansion of the greatest minimal separation between ten points in a unit circle.

This page as a plain text file.
%I A281115 #10 Oct 27 2023 10:37:47
%S A281115 7,1,0,9,7,8,2,3,5,5,6,1,2,4,6,5,5,0,8,3,0,7,2,5,9,7,6,9,0,2,6,8,7,2,
%T A281115 5,3,4,9,3,9,6,8,5,9,6,3,1,3,8,0,9,4,6,9,7,9,8,3,2,4,1,8,3,4,2,5,2,7,
%U A281115 3,7,9,5,5,1,6,5,3,4,0,4,5,5,5,1,9,9,5,5,6,1,0,6,5,3,3,4,9,5,9,1,3,3
%N A281115 Decimal expansion of the greatest minimal separation between ten points in a unit circle.
%C A281115 The corresponding values for two to nine points are all of the form 2*sin(Pi/k), where k is the number of points N for N <= 6 and N-1 for N > 6. The value for ten points is the first that cannot be expressed in this form with k an integer, although it is still algebraic of degree 24.
%C A281115 The smallest circle ten unit circles will fit into has radius r = 1 + 2/d = 3.81302563... and the maximum radius of ten non-overlapping circles in the unit circle is 1 / r = 0.26225892...
%H A281115 U. Pirl, <a href="http://dx.doi.org/10.1002/mana.19690400110">Der Mindestabstand von n in der Einheitskreisscheibe gelegenen Punkten</a>, Mathematische Nachrichten 40 (1969), 111-124.
%H A281115 Eckard Specht, <a href="http://hydra.nat.uni-magdeburg.de/packing/cci/">The best known packings of equal circles in a circle</a>
%H A281115 Jeremy Tan, <a href="https://gist.github.com/Parclytaxel/fe51678ea07cc448c56c3927afc44ac1">Sympy (Python) program</a>
%H A281115 <a href="/index/Al#algebraic_24">Index entries for algebraic numbers, degree 24</a>
%F A281115 d is the smallest positive root of d^24 - 32*d^22 + 463*d^20 - 3998*d^18 + 22899*d^16 - 91428*d^14 + 260179*d^12 - 529874*d^10 + 763206*d^8 - 754052*d^6 + 481476*d^4 - 176440*d^2 + 27556.
%e A281115 0.71097823556124655083072597690268...
%o A281115 (PARI) p = Pol([1, 0, -32, 0, 463, 0, -3998, 0, 22899, 0, -91428, 0, 260179, 0, -529874, 0, 763206, 0, -754052, 0, 481476, 0, -176440, 0, 27556]); polrootsreal(p)[5]
%Y A281115 Cf. A281065 (10 points in unit square).
%K A281115 nonn,cons
%O A281115 0,1
%A A281115 _Jeremy Tan_, Jan 14 2017