cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A281122 Triangle T read by rows: n-th row (n>=0) gives the non-vanishing coefficients of the polynomial q(n,x) = ((x+1)^(2^n) - (x-1)^(2^n))/2.

Original entry on oeis.org

1, 2, 4, 4, 8, 56, 56, 8, 16, 560, 4368, 11440, 11440, 4368, 560, 16, 32, 4960, 201376, 3365856, 28048800, 129024480, 347373600, 565722720, 565722720, 347373600, 129024480, 28048800, 3365856, 201376, 4960, 32
Offset: 0

Views

Author

Martin Renner, Jan 15 2017

Keywords

Comments

The length of row n is 1 for n = 0 and 2^(n-1) = A000079(n-1) for n >= 1.
The polynomial q(n,x) = 2^n*Product_{k=0..n-1} p(k,x) with polynomial p(n,x) = ((x+1)^(2^n) + (x-1)^(2^n))/2, whose coefficients are tabulated in A201461.
The row polynomials are q(n, x) = Sum_{k=0..2^(n-1)-1} T(n, k)*x^(2^n-1-2*k) for n >= 1, and q(0,x) = 1. - Wolfdieter Lang, Jan 19 2017
A201461 and T(n,k) are a bisection of row 2^n of Pascal's triangle A007318.
The algorithm r(n) = 1/2*(r(n-1) + A/r(n-1)), starting with r(0) = A, used for approximating sqrt(A), which is known as the Babylonian method or Hero's method after the first-century Greek mathematician Hero of Alexandria and which can be derived from Newton's method, generates fractions beginning with (A+1)/2, (A^2 + 6*A + 1)/(4*A + 4), (A^4 + 28*A^3 + 70*A^2 + 28*A + 1)/(8*A^3 + 56*A^2 + 56*A + 8), ... This is sqrt(A)*p(n,sqrt(A))/q(n,sqrt(A)) with the given polynomials p(n,x) and q(n,x).

Examples

			The triangle of non-vanishing coefficients starts with
1
2
4, 4
8, 56, 56, 8
16, 560, 4368, 11440, 11440, 4368, 560, 16
etc., since the first few polynomials are
q(0,x) = 1,
q(1,x) = 2*x,
q(2,x) = 4*x^3 + 4*x = 4*x*(x^2 + 1),
q(3,x) = 8*x^7 + 56*x^5 + 56*x^3 + 8*x = 8*x*(x^2 + 1)*(x^4 + 6*x^2 + 1),
q(4,x) = 16*x^15 + 560*x^13 + 4368*x^11 + 11440*x^9 + 11440*x^7 + 4368*x^5 + 560*x^3 + 16*x = 16*x*(x^2 + 1)*(x^4 + 6*x^2 + 1)*(x^8 + 28*x^6 + 70*x^4 + 28*x^2 + 1),
etc.
		

Crossrefs

Programs

  • Maple
    CoeffList := p -> remove(n->n=0, [op(PolynomialTools:-CoefficientList(p, x))]):
    Tpoly := n -> (1/2)*((x+1)^(2^n) - (x-1)^(2^n));
    seq(print(CoeffList(Tpoly(n))), n=0..5); # Peter Luschny, Feb 04 2021
  • Mathematica
    q[n_] := DeleteCases[ CoefficientList[ Expand[((x +1)^(2^n) - (x -1)^(2^n))/2], x], 0]; Array[q, 7, 0] // Flatten (* Robert G. Wilson v, Jan 16 2017 *)
    t={1};T[n_,k_]:=Table[Binomial[2^n,2k+1],{n,1,6},{k,0,2^(n-1)-1}];Do[AppendTo[t,T[n,k]]];Flatten[t] (* Indranil Ghosh, Feb 22 2017 *)

Formula

T(n, k) = 1 if n = 0 and k = 0, and T(n, k) = binomial(2^n,2*k+1) = A103328(2^(n-1),k) for k = 0..2^(n-1)-1 and n >= 1. - Wolfdieter Lang, Jan 19 2017