A281122 Triangle T read by rows: n-th row (n>=0) gives the non-vanishing coefficients of the polynomial q(n,x) = ((x+1)^(2^n) - (x-1)^(2^n))/2.
1, 2, 4, 4, 8, 56, 56, 8, 16, 560, 4368, 11440, 11440, 4368, 560, 16, 32, 4960, 201376, 3365856, 28048800, 129024480, 347373600, 565722720, 565722720, 347373600, 129024480, 28048800, 3365856, 201376, 4960, 32
Offset: 0
Examples
The triangle of non-vanishing coefficients starts with 1 2 4, 4 8, 56, 56, 8 16, 560, 4368, 11440, 11440, 4368, 560, 16 etc., since the first few polynomials are q(0,x) = 1, q(1,x) = 2*x, q(2,x) = 4*x^3 + 4*x = 4*x*(x^2 + 1), q(3,x) = 8*x^7 + 56*x^5 + 56*x^3 + 8*x = 8*x*(x^2 + 1)*(x^4 + 6*x^2 + 1), q(4,x) = 16*x^15 + 560*x^13 + 4368*x^11 + 11440*x^9 + 11440*x^7 + 4368*x^5 + 560*x^3 + 16*x = 16*x*(x^2 + 1)*(x^4 + 6*x^2 + 1)*(x^8 + 28*x^6 + 70*x^4 + 28*x^2 + 1), etc.
Links
- Indranil Ghosh, Rows 0..11, flattened
Programs
-
Maple
CoeffList := p -> remove(n->n=0, [op(PolynomialTools:-CoefficientList(p, x))]): Tpoly := n -> (1/2)*((x+1)^(2^n) - (x-1)^(2^n)); seq(print(CoeffList(Tpoly(n))), n=0..5); # Peter Luschny, Feb 04 2021
-
Mathematica
q[n_] := DeleteCases[ CoefficientList[ Expand[((x +1)^(2^n) - (x -1)^(2^n))/2], x], 0]; Array[q, 7, 0] // Flatten (* Robert G. Wilson v, Jan 16 2017 *) t={1};T[n_,k_]:=Table[Binomial[2^n,2k+1],{n,1,6},{k,0,2^(n-1)-1}];Do[AppendTo[t,T[n,k]]];Flatten[t] (* Indranil Ghosh, Feb 22 2017 *)
Formula
T(n, k) = 1 if n = 0 and k = 0, and T(n, k) = binomial(2^n,2*k+1) = A103328(2^(n-1),k) for k = 0..2^(n-1)-1 and n >= 1. - Wolfdieter Lang, Jan 19 2017
Comments