This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A281151 #29 Sep 08 2022 08:46:18 %S A281151 0,1,4,9,16,24,33,44,57,72,88,105,124,145,168,192,217,244,273,304,336, %T A281151 369,404,441,480,520,561,604,649,696,744,793,844,897,952,1008,1065, %U A281151 1124,1185,1248,1312,1377,1444,1513,1584,1656,1729,1804,1881,1960,2040,2121,2204,2289 %N A281151 a(n) = floor(4*n*(n+1)/5). %H A281151 Bruno Berselli, <a href="/A281151/b281151.txt">Table of n, a(n) for n = 0..1000</a> %H A281151 <a href="/index/Rec#order_07">Index entries for linear recurrences with constant coefficients</a>, signature (2,-1,0,0,1,-2,1). %F A281151 O.g.f.: x*(1 + x^2)*(1 + x)^2/((1 - x)^3*(1 + x + x^2 + x^3 + x^4)). %F A281151 a(n) = a(-n-1) = 2*a(n-1) - a(n-2) + a(n-5) - 2*a(n-6) + a(n-7) = a(n-5) + 8*(n-2). %F A281151 a(5*k+r) = 20*k^2 + 4*(2*r+1)*k + r^2, where 0 <= r <= 4. Example: for r=3, a(5*k+3) = (2*k+1)*(10*k+9), which gives: 9, 57, 145, 273, 441, 649 etc. Also, a(n) belongs to A047462, in fact: for r = 0 or 4, a(n) == 0 (mod 8); for r = 1 or 3, a(n) == 1 (mod 8); for r = 2, a(n) == 4 (mod 8). %F A281151 a(n) = a(-n) + A047462(n). %F A281151 a(n) = n^2 - floor((n-2)^2/5). %t A281151 Table[Floor[4 n (n + 1)/5], {n, 0, 60}] %o A281151 (PARI) vector(60, n, n--; floor(4*n*(n+1)/5)) %o A281151 (Python) [int(4*n*(n+1)/5) for n in range(60)] %o A281151 (Sage) [floor(4*n*(n+1)/5) for n in range(60)] %o A281151 (Maxima) makelist(floor(4*n*(n+1)/5), n, 0, 60); %o A281151 (Magma) [4*n*(n+1) div 5: n in [0..60]]; %Y A281151 Subsequence of A047462. %Y A281151 Partial sums of A047486. %Y A281151 Cf. A184005: n^2 - floor((n-2)^2/4). %Y A281151 Cf. sequences with formula floor(k*n*(n+1)/(k+1)): A000217 (k=1), A143978 (k=2), A281026 (k=3), this sequence (k=4), A194275 (k=5). %K A281151 nonn,easy %O A281151 0,3 %A A281151 _Bruno Berselli_, Jan 16 2017