This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A281183 #31 Mar 08 2025 06:02:59 %S A281183 1,2,32,1376,114176,15519488,3132551168,879422726144,327670676455424, %T A281183 156439068819587072,93116847688811282432,67602541384815095054336, %U A281183 58796336342280763841970176,60351125684887424790500999168,72187248798124538021926003539968,99529442030183464236437157900713984,156697512616609083360755035696397287424 %N A281183 E.g.f. C(x)^2 = cosh( Integral C(x)^3 dx )^2 where C(x) is described by A281181. %H A281183 Paul D. Hanna, <a href="/A281183/b281183.txt">Table of n, a(n) for n = 0..100</a> %F A281183 E.g.f. C(x)^2 = d/dx Series_Reversion( Integral cos(x)^2 dx ). %F A281183 E.g.f. C(x)^2 = d/dx Series_Reversion( (2*x + sin(2*x))/4 ). %F A281183 E.g.f. C(x)^2 where related series S(x) and C(x) satisfy: %F A281183 (1.a) C(x)^2 - S(x)^2 = 1. %F A281183 (1.b) C(x)^2 + S(x)^2 = 1 + Integral 4*C(x)^4*S(x) dx. %F A281183 Integrals. %F A281183 (2.a) S(x) = Integral C(x)^4 dx. %F A281183 (2.b) C(x) = 1 + Integral C(x)^3*S(x) dx. %F A281183 Exponential. %F A281183 (3.a) C(x) + S(x) = exp( Integral C(x)^3 dx ). %F A281183 (3.b) C(x) = cosh( Integral C(x)^3 dx ). %F A281183 (3.c) S(x) = sinh( Integral C(x)^3 dx ). %F A281183 Derivatives. %F A281183 (4.a) S'(x) = C(x)^4. %F A281183 (4.b) C'(x) = C(x)^3*S(x). %F A281183 (4.c) (C'(x) + S'(x))/(C(x) + S(x)) = C(x)^3. %F A281183 (4.d) (C(x)^4 - S(x)^4)' = 4*C(x)^4*S(x). %F A281183 Explicit Solutions. %F A281183 (5.a) S(x) = Series_Reversion( Integral 1/(1 + x^2)^2 dx ). %F A281183 (5.b) C(x) = d/dx Series_Reversion( Integral sqrt(1 - x^2) dx ). %F A281183 (5.c) C(x) + S(x) = exp( Series_Reversion( Integral 1/cosh(x)^3 dx ) ). %F A281183 (5.d) C(x)^2 = d/dx Series_Reversion( Integral cos(x)^2 dx ). %F A281183 (5.e) C(x)^3 = d/dx Series_Reversion( Integral 1/cosh(x)^3 dx ). %e A281183 E.g.f.: C(x)^2 = 1 + 2*x^2/2! + 32*x^4/4! + 1376*x^6/6! + 114176*x^8/8! + 15519488*x^10/10! + 3132551168*x^12/12! + 879422726144*x^14/14! + 327670676455424*x^16/16! + 156439068819587072*x^18/18! +... %e A281183 such that C(x)^2 = 1 + S(x)^2 and the series for C(x) and S(x) begin: %e A281183 C(x) = 1 + x^2/2! + 13*x^4/4! + 493*x^6/6! + 37369*x^8/8! + 4732249*x^10/10! + 901188997*x^12/12! + 240798388357*x^14/14! + 85948640603761*x^16/16! +...+ A281181(n)*x^(2*n)/(2*n)! +... %e A281183 S(x) = S(x) = x + 4*x^3/3! + 88*x^5/5! + 4672*x^7/7! + 454144*x^9/9! + 70084096*x^11/11! + 15728822272*x^13/13! + 4836914249728*x^15/15! + 1952137912385536*x^17/17! +...+ A281180(n)*x^(2*n-1)/(2*n-1)! +... %o A281183 (PARI) {a(n) = my(S=x, C=1); for(i=1, n, S = intformal( C^4 +x*O(x^(2*n))); C = 1 + intformal( S*C^3 ) ); (2*n)!*polcoeff(C^2, 2*n)} %o A281183 for(n=0, 30, print1(a(n), ", ")) %o A281183 (PARI) /* From C(x)^2 = d/dx Series_Reversion( Integral cos(x)^2 dx ) */ %o A281183 {a(n) = my(C2=x); C2 = deriv( serreverse( intformal( cos(x +x*O(x^(2*n)))^2 ))); (2*n)!*polcoeff(C2, 2*n)} %o A281183 for(n=0, 30, print1(a(n), ", ")) %Y A281183 Cf. A281180 (S), A281181 (C), A281182 (C+S), A281184 (C^3). %K A281183 nonn %O A281183 0,2 %A A281183 _Paul D. Hanna_, Jan 16 2017