A281185 a(0)=0, a(1)=1, a(2)=0; thereafter, a(2n) = a(n) + a(n+1) for n >= 2, a(2n+1) = a(n) for n >= 1.
0, 1, 0, 1, 1, 0, 2, 1, 1, 1, 2, 0, 3, 2, 2, 1, 2, 1, 3, 1, 2, 2, 3, 0, 5, 3, 4, 2, 3, 2, 3, 1, 3, 2, 4, 1, 4, 3, 3, 1, 4, 2, 5, 2, 3, 3, 5, 0, 8, 5, 7, 3, 6, 4, 5, 2, 5, 3, 5, 2, 4, 3, 4, 1, 5, 3, 6, 2, 5, 4, 5, 1, 7, 4, 6, 3, 4, 3, 5, 1, 6, 4, 7, 2, 7, 5, 5, 2, 6, 3, 8, 3, 5, 5, 8, 0, 13, 8, 12, 5
Offset: 0
Examples
a(3) = a(1) = 1, a(4) = a(2) + a(3) = 0 + 1 = 1, a(5) = a(2) = 0.
Links
- Rémy Sigrist, Table of n, a(n) for n = 0..25000
- M. Dennison, A Sequence Related to the Stern Sequence, Ph.D. dissertation, University of Illinois at Urbana-Champaign, 2010.
- Melissa Dennison, On Properties of the General Bow Sequence, J. Int. Seq., Vol. 22 (2019), Article 19.2.7.
Programs
-
Maple
f:=proc(n) option remember; if n=0 then 0 elif n=1 then 1 elif n=2 then 0 else if n mod 2 = 0 then f(n/2)+f(1+n/2) else f((n-1)/2) fi; fi; end; [seq(f(n),n=0..150)]; # N. J. A. Sloane, Apr 26 2017
-
Mathematica
b[0]=0; b[1]=1; b[2]=0; b[n_?EvenQ]:=b[n]=b[n/2]+b[n/2+1]; b[n_?OddQ]:=b[n]=b[(n-1)/2]
Extensions
Edited by N. J. A. Sloane, Apr 26 2017
Comments