A281187 Totient numbers whose squares are not totient numbers.
22, 46, 58, 78, 82, 92, 102, 106, 138, 164, 166, 172, 178, 190, 212, 226, 238, 262, 282, 310, 316, 328, 332, 344, 346, 356, 358, 366, 382, 388, 418, 442, 452, 478, 498, 502, 506, 508, 562, 586, 598, 606, 618, 620, 632, 656, 658, 676, 692, 712, 718, 742, 796, 808, 822, 838, 856, 862, 884, 886, 970, 976
Offset: 1
Keywords
Examples
22 is a term because 22 = phi(23) and 22^2 = 484 is not a totient. 83^2 * 2^k is a term for 5 < k < 34.
Links
- Robert Israel, Table of n, a(n) for n = 1..4000
Programs
-
Maple
N:= 1000: # to get all terms <= N M:= fsolve(n/(exp(gamma)*log(log(n))+3/log(log(n))) = N, n=4..N^2): Totients:= select(`<=`,{seq(numtheory:-phi(n),n=1..M)},N): R:= select(t -> numtheory:-invphi(t^2) = [], Totients): sort(convert(R,list));
-
PARI
lista(nn) = {for(n=1, nn,if(istotient(n) && !istotient(n^2), print1(n,", ")));}
Comments