A281188 Number of refactorable numbers m such that tau(m) = n, or 0 if there are infinitely many such numbers.
1, 1, 1, 1, 1, 2, 1, 0, 0, 2, 1, 0, 1, 2, 2, 0, 1, 0, 1, 0, 2, 2, 1, 0, 0, 2, 0, 0, 1, 6, 1, 0, 2, 2, 2, 0, 1, 2, 2, 0, 1, 6, 1, 0, 0, 2, 1, 0, 0, 0, 2, 0, 1, 0, 2, 0, 2, 2, 1, 0, 1, 2, 0, 0, 2, 6, 1, 0, 2, 6, 1, 0, 1, 2, 0, 0, 2, 6, 1, 0, 0, 2, 1, 0, 2, 2, 2, 0, 1, 0, 2, 0, 2, 2, 2, 0, 1, 0, 0, 0
Offset: 1
Examples
If n is prime, the only refactorable number m with tau(m) = n is n^(n-1), so a(n) = 1 for n prime. Any number n of the form 8p, p a prime not equal to 2, has tau(n) = 8, and thus n is refactorable. Hence a(8) = 0.
Links
- Altug Alkan, Table of n, a(n) for n = 1..10000
- Franklin T. Adams-Watters, Refactorable numbers with tau squarefree
- S. Colton, Refactorable Numbers - A Machine Invention, J. Integer Sequences, Vol. 2, 1999.
- Jon E. Schoenfield and Altug Alkan, Refactorable numbers with tau nonsquarefree
Programs
-
Mathematica
k = 1; t[] = 0; t[4] = 1; While[k < 100000001, m = DivisorSigma[0, k]; If[ Mod[k, m] == 0 && SquareFreeQ@ m, t[m]++]; k++]; t@# & /@ Range@20 (* _Robert G. Wilson v, Jan 16 2017 *)
-
PARI
a(n) = if(n==4, 1, if(issquarefree(n) == 1, omega(n)!, 0)); \\ Altug Alkan, Jan 18 2017
Extensions
More terms from Altug Alkan, Jan 17 2017
Comments