A281189 a(n) is the first composite number having the same base-(2n) digits as its prime factors (with multiplicity), excluding zero digits (or 0 if no such composite number exists).
15, 85, 57, 85, 1111, 185, 4119, 4369, 489, 451, 13315, 679, 26533, 985, 1057, 1285, 179503, 1387, 82311, 2005, 2649, 2047, 4663957, 2509, 2761, 3385, 3097, 3277, 243895, 4207, 16246817, 4369, 4577, 471651, 5401, 5629, 607839, 466429, 483731, 6817, 1009273, 10587, 1132547, 8119, 8401, 798731, 990583, 9809, 1411791, 1062517
Offset: 1
Examples
a(2) = A278981(4) since 85 is the least composite number which satisfies the criterion of A278981.
Links
- Ely Golden and Robert G. Wilson v, Table of n, a(n) for n = 1..75
Programs
-
Mathematica
g[n_] := g[n] = Flatten[ Table[#[[1]], {#[[2]]}] & /@ FactorInteger@ n]; f = Compile[{{b, _Integer}}, Block[{c = b^2}, While[ PrimeQ@ c || DeleteCases[ Sort[ IntegerDigits[c, b]], 0] != DeleteCases[ Sort[ Flatten[ IntegerDigits[ g[c], b]]], 0], c++]; c]]; Table[ f[b], {b, 2, 80, 2}]
Formula
a(n) = A278981(2n).
Comments