cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A281189 a(n) is the first composite number having the same base-(2n) digits as its prime factors (with multiplicity), excluding zero digits (or 0 if no such composite number exists).

Original entry on oeis.org

15, 85, 57, 85, 1111, 185, 4119, 4369, 489, 451, 13315, 679, 26533, 985, 1057, 1285, 179503, 1387, 82311, 2005, 2649, 2047, 4663957, 2509, 2761, 3385, 3097, 3277, 243895, 4207, 16246817, 4369, 4577, 471651, 5401, 5629, 607839, 466429, 483731, 6817, 1009273, 10587, 1132547, 8119, 8401, 798731, 990583, 9809, 1411791, 1062517
Offset: 1

Views

Author

Ely Golden and Robert G. Wilson v, Jan 16 2017

Keywords

Comments

Bisection of A278981.
Conjecture: a(n) always exceeds 0.
If a(n) = 0 then it must be the case that there exists no more than one prime of the form (2n)^m + 1. Otherwise, the product of two such primes would satisfy the condition of A278981 in base 2n.
Records: 15, 85, 1111, 4119, 4369, 13315, 26533, 179503, 4663957, 16246817, 75927167, 120872069, 335192766, ..., .
a(76) > 2^27.

Examples

			a(2) = A278981(4) since 85 is the least composite number which satisfies the criterion of A278981.
		

Crossrefs

Programs

  • Mathematica
    g[n_] := g[n] = Flatten[ Table[#[[1]], {#[[2]]}] & /@ FactorInteger@ n]; f = Compile[{{b, _Integer}}, Block[{c = b^2}, While[ PrimeQ@ c || DeleteCases[ Sort[ IntegerDigits[c, b]], 0] != DeleteCases[ Sort[ Flatten[ IntegerDigits[ g[c], b]]], 0], c++]; c]]; Table[ f[b], {b, 2, 80, 2}]

Formula

a(n) = A278981(2n).