A281200 Number of n X 3 0..1 arrays with no element equal to more than one of its horizontal and antidiagonal neighbors, with the exception of exactly one element, and with new values introduced in order 0 sequentially upwards.
1, 14, 56, 168, 448, 1120, 2688, 6272, 14336, 32256, 71680, 157696, 344064, 745472, 1605632, 3440640, 7340032, 15597568, 33030144, 69730304, 146800640, 308281344, 645922816, 1350565888, 2818572288, 5872025600, 12213813248, 25367150592
Offset: 1
Keywords
Examples
Some solutions for n=4: ..0..1..0. .0..1..1. .0..0..1. .0..1..0. .0..0..1. .0..0..0. .0..1..1 ..1..1..0. .0..1..0. .1..0..1. .0..1..1. .1..1..0. .1..1..0. .1..0..1 ..0..1..0. .0..1..0. .1..0..1. .1..0..1. .0..1..0. .0..1..0. .1..0..1 ..0..1..0. .0..1..0. .1..1..0. .1..0..0. .0..1..0. .0..1..1. .0..1..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
- Sela Fried, Counting r X s rectangles in nondecreasing and Smirnov words, arXiv:2406.18923 [math.CO], 2024. See p. 12.
Crossrefs
Column 3 of A281205.
Formula
Empirical: a(n) = 4*a(n-1) - 4*a(n-2) for n>3.
Conjectures from Colin Barker, Feb 16 2019: (Start)
G.f.: x*(1 + 10*x + 4*x^2) / (1 - 2*x)^2.
a(n) = 7*2^(n-1) * (n-1) for n>1.
(End)