cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A281205 T(n,k)=Number of nXk 0..1 arrays with no element equal to more than one of its horizontal and antidiagonal neighbors, with the exception of exactly one element, and with new values introduced in order 0 sequentially upwards.

Original entry on oeis.org

0, 0, 0, 1, 2, 0, 2, 14, 10, 0, 5, 28, 56, 38, 0, 10, 52, 98, 168, 130, 0, 20, 94, 176, 270, 448, 420, 0, 38, 166, 310, 470, 676, 1120, 1308, 0, 71, 290, 537, 804, 1141, 1588, 2688, 3970, 0, 130, 502, 922, 1358, 1906, 2602, 3604, 6272, 11822, 0, 235, 864, 1573, 2284, 3137
Offset: 1

Views

Author

R. H. Hardin, Jan 17 2017

Keywords

Comments

Table starts
.0.....0.....1.....2.....5....10.....20.....38.....71....130....235.....420
.0.....2....14....28....52....94....166....290....502....864...1480....2526
.0....10....56....98...176...310....537....922...1573...2672...4524....7640
.0....38...168...270...470...804...1358...2284...3834...6432..10786...18080
.0...130...448...676..1141..1906...3137...5160...8510..14084..23379...38894
.0...420..1120..1588..2602..4248...6838..11010..17840..29120..47838...78978
.0..1308..2688..3604..5712..9118..14375..22700..36144..58168..94524..154800
.0..3970..6272..7960.12208.19026..29416..45614..71452.113388.182228..295950
.0.11822.14336.17254.25577.38916..58984..89916.138676.217124.345089..555674
.0.34690.32256.36848.52784.78356.116466.174558.265278.409976.644568.1028978

Examples

			Some solutions for n=4 k=4
..0..1..0..1. .0..1..0..1. .0..1..0..1. .0..0..1..1. .0..1..0..1
..0..1..1..1. .0..1..0..0. .1..1..0..1. .1..0..1..0. .0..1..0..0
..0..1..0..0. .0..1..0..1. .0..1..0..1. .1..0..1..0. .1..0..1..1
..0..1..1..0. .0..1..0..0. .0..1..0..0. .0..1..0..1. .1..0..0..1
		

Crossrefs

Row 1 is A001629(n-1).

Formula

Empirical for column k:
k=1: a(n) = a(n-1)
k=2: a(n) = 6*a(n-1) -11*a(n-2) +6*a(n-3) -a(n-4)
k=3: a(n) = 4*a(n-1) -4*a(n-2) for n>3
k=4: a(n) = 2*a(n-1) +3*a(n-2) -4*a(n-3) -6*a(n-4) +2*a(n-5) +4*a(n-6) -a(n-8)
k=5: a(n) = 4*a(n-1) -4*a(n-2) -2*a(n-4) +4*a(n-5) -a(n-8)
k=6: [order 12]
k=7: [order 12]
Empirical for row n:
n=1: a(n) = 2*a(n-1) +a(n-2) -2*a(n-3) -a(n-4)
n=2: a(n) = 3*a(n-1) -a(n-2) -3*a(n-3) +a(n-4) +a(n-5) for n>7
n=3: a(n) = 3*a(n-1) -a(n-2) -3*a(n-3) +a(n-4) +a(n-5) for n>8
n=4: a(n) = 4*a(n-1) -4*a(n-2) -2*a(n-3) +4*a(n-4) -a(n-6) for n>10
n=5: a(n) = 4*a(n-1) -4*a(n-2) -2*a(n-3) +4*a(n-4) -a(n-6) for n>11
n=6: a(n) = 4*a(n-1) -4*a(n-2) -2*a(n-3) +4*a(n-4) -a(n-6) for n>12
n=7: a(n) = 4*a(n-1) -4*a(n-2) -2*a(n-3) +4*a(n-4) -a(n-6) for n>13