A281205 T(n,k)=Number of nXk 0..1 arrays with no element equal to more than one of its horizontal and antidiagonal neighbors, with the exception of exactly one element, and with new values introduced in order 0 sequentially upwards.
0, 0, 0, 1, 2, 0, 2, 14, 10, 0, 5, 28, 56, 38, 0, 10, 52, 98, 168, 130, 0, 20, 94, 176, 270, 448, 420, 0, 38, 166, 310, 470, 676, 1120, 1308, 0, 71, 290, 537, 804, 1141, 1588, 2688, 3970, 0, 130, 502, 922, 1358, 1906, 2602, 3604, 6272, 11822, 0, 235, 864, 1573, 2284, 3137
Offset: 1
Examples
Some solutions for n=4 k=4 ..0..1..0..1. .0..1..0..1. .0..1..0..1. .0..0..1..1. .0..1..0..1 ..0..1..1..1. .0..1..0..0. .1..1..0..1. .1..0..1..0. .0..1..0..0 ..0..1..0..0. .0..1..0..1. .0..1..0..1. .1..0..1..0. .1..0..1..1 ..0..1..1..0. .0..1..0..0. .0..1..0..0. .0..1..0..1. .1..0..0..1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..421
Crossrefs
Row 1 is A001629(n-1).
Formula
Empirical for column k:
k=1: a(n) = a(n-1)
k=2: a(n) = 6*a(n-1) -11*a(n-2) +6*a(n-3) -a(n-4)
k=3: a(n) = 4*a(n-1) -4*a(n-2) for n>3
k=4: a(n) = 2*a(n-1) +3*a(n-2) -4*a(n-3) -6*a(n-4) +2*a(n-5) +4*a(n-6) -a(n-8)
k=5: a(n) = 4*a(n-1) -4*a(n-2) -2*a(n-4) +4*a(n-5) -a(n-8)
k=6: [order 12]
k=7: [order 12]
Empirical for row n:
n=1: a(n) = 2*a(n-1) +a(n-2) -2*a(n-3) -a(n-4)
n=2: a(n) = 3*a(n-1) -a(n-2) -3*a(n-3) +a(n-4) +a(n-5) for n>7
n=3: a(n) = 3*a(n-1) -a(n-2) -3*a(n-3) +a(n-4) +a(n-5) for n>8
n=4: a(n) = 4*a(n-1) -4*a(n-2) -2*a(n-3) +4*a(n-4) -a(n-6) for n>10
n=5: a(n) = 4*a(n-1) -4*a(n-2) -2*a(n-3) +4*a(n-4) -a(n-6) for n>11
n=6: a(n) = 4*a(n-1) -4*a(n-2) -2*a(n-3) +4*a(n-4) -a(n-6) for n>12
n=7: a(n) = 4*a(n-1) -4*a(n-2) -2*a(n-3) +4*a(n-4) -a(n-6) for n>13
Comments