This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A281257 #22 Jan 20 2017 13:52:05 %S A281257 11,223,2556997,3333331,14559007,47836783,56672227,65555671,181114559, %T A281257 411488881,583227779,1399999987,5723503439,10047846871,11361255547, %U A281257 13787777879,18474111311,19905449987,20235780199,21226777753,22557892319,71445725647,83447001413,103459003423 %N A281257 Primes in A067894: primes in the partial sums of the binary representations of the first m natural numbers, reading these representations in decimal. %C A281257 Intersection of A000040 and A067894. %H A281257 Robert Israel, <a href="/A281257/b281257.txt">Table of n, a(n) for n = 1..10000</a> %e A281257 0 + 1 + 10 = 11 (prime), so 11 is in the sequence. %e A281257 0 + 1 + 10 + 11 + 100 + 101 = 223 (prime), so 223 is in the sequence. %p A281257 select(isprime, ListTools:-PartialSums(map(convert,[$1..1000],binary))); # _Robert Israel_, Jan 18 2017 %t A281257 Select[Accumulate[Table[FromDigits[IntegerDigits[n, 2]], {n, 0, 1000}]], PrimeQ] %o A281257 (PARI) F(k,{b=10})=sum(i=1,k,subst(Pol(binary(i),y),y,b)); %o A281257 test(k,{b=10})={my(z=F(k,b));return(isprime(z)*z)}; %o A281257 Values(n,{b=10})={my(L=List(),j,t);while(#L<n,t=test(j++,b);if(t,listput(L,j)));return(vector(#L,i,L[i]))} %o A281257 firstTerms(n,{b=10})={my(w=Values(n,b));return(vector(#w,i,F(w[i],b)))} \\ Example: print(firstTerms(25)); - _R. J. Cano_, Jan 19 2017 %Y A281257 Cf. A000040, A007088, A067894. %K A281257 nonn,base %O A281257 1,1 %A A281257 _K. D. Bajpai_, Jan 18 2017