cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A281270 a(n) is the number of closed BCK (a.k.a. affine) lambda terms of size n.

This page as a plain text file.
%I A281270 #52 Apr 11 2022 14:54:54
%S A281270 0,0,1,2,3,9,30,81,242,838,2799,9365,33616,122937,449698,1696724,
%T A281270 6558855,25559806,101294687,409363758,1673735259,6928460475,
%U A281270 29115833976,123835124242,532449210893,2317382872404,10199542298725,45345006540851,203704505953902,924427259637953,4234544300812834
%N A281270 a(n) is the number of closed BCK (a.k.a. affine) lambda terms of size n.
%C A281270 It appears that for n >= 1, a(n + 5) == a(n) (mod 5), a(n + 38*7) == a(n) (mod 7), a(n + 30*11) == a(n) (mod 11) and a(n + 288*17) == a(n) (mod 17). - _Peter Bala_, Apr 11 2022
%H A281270 Gheorghe Coserea, <a href="/A281270/b281270.txt">Table of n, a(n) for n = 0..201</a>
%H A281270 O. Bodini, D. Gardy, and A. Jacquot, <a href="https://doi.org/10.1016/j.tcs.2013.01.008">Asymptotics and random sampling for BCI and BCK lambda terms</a>, Theor. Comput. Sci. 502: 227-238 (2013).
%H A281270 Katarzyna Grygiel, Pawel M. Idziak and Marek Zaionc, <a href="http://arxiv.org/abs/1112.0643">How big is BCI fragment of BCK logic</a>, arXiv preprint arXiv:1112.0643 [cs.LO], 2011. (the authors of the paper incorrectly identified this sequence as A073950)
%H A281270 Pierre Lescanne, <a href="https://arxiv.org/abs/1702.03085">Quantitative aspects of linear and affine closed lambda term</a>, arXiv:1702.03085 [cs.DM], 2017.
%F A281270 a(n) = 1 + a(n-1) + 2*Sum_{k=2..n-3} k*a(k) + Sum_{k=2..n-3} a(k)*a(n-1-k) for n>=2.
%F A281270 0 = 2*x^4*y' + (x-x^2)*y^2 - (1-x)^2*y + x^2, where y(x) is the g.f.
%F A281270 a(3*n+1) = Sum_{k=0..n-1} binomial(3*n,3*k+1)*A062980(k).
%e A281270 A(x) = x^2 + 2*x^3 + 3*x^4 + 9*x^5 + 30*x^6 + 81*x^7 + 242*x^8 + ...
%t A281270 a[0] = a[1] = 0; a[n_] := a[n] = 1 + a[n - 1] + 2 Sum[ k a[k], {k, 2, n - 3}] + Sum[a[k] a[n - 1 - k], {k, 2, n - 3}]; Table[a@ n, {n, 0, 30}] (* _Michael De Vlieger_, Apr 02 2017 *)
%o A281270 (PARI)
%o A281270 seq(N) = {
%o A281270   my(a = vector(N));
%o A281270   for (n=2, N, my(s1 = sum(k=2, n-3, k*a[k]));
%o A281270     a[n] = 1 + a[n-1] + 2*s1 + sum(k=2, n-3, a[k]*a[n-1-k]));
%o A281270   concat(0,a);
%o A281270 };
%o A281270 seq(30)
%o A281270 \\ test: y = Ser(seq(201)); 0 == 2*x^4*y' + (x-x^2)*y^2 - (1-x)^2*y + x^2
%Y A281270 Cf. A062980, A262301, A267827.
%K A281270 nonn
%O A281270 0,4
%A A281270 _Gheorghe Coserea_, Apr 02 2017
%E A281270 Name clarified by _Pierre Lescanne_, May 19 2017