A281498 Least k >= 0 such that 2^k * n! is not a refactorable number.
2, 1, 0, 1, 0, 2, 4, 1, 2, 2, 4, 2, 6, 5, 5, 1, 3, 2, 6, 4, 4, 3, 9, 6, 6, 5, 5, 3, 5, 4, 10, 5, 5, 4, 4, 2, 6, 5, 5, 2, 4, 3, 7, 5, 5, 4, 10, 6, 6, 5, 5, 3, 9, 8, 8, 5, 5, 4, 6, 4, 10, 9, 9, 3, 3, 2, 6, 4, 4, 3, 5, 2, 8, 7, 7, 5, 5, 4, 8, 4, 3, 3, 9, 7, 7, 6, 6, 3, 11, 10, 10, 8, 8, 7, 7, 2, 6, 5, 5, 3
Offset: 1
Keywords
Examples
a(2^8) = 1 because 2 * (2^8)! is not a refactorable number.
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
- S. Colton, Refactorable Numbers - A Machine Invention, J. Integer Sequences, Vol. 2, 1999.
- Joshua Zelinsky, Tau Numbers: A Partial Proof of a Conjecture and Other Results , Journal of Integer Sequences, Vol. 5 (2002), Article 02.2.8
Programs
-
PARI
isA033950(n) = n % numdiv(n) == 0; a(n) = my(k=0); while (isA033950 (2^k*n!), k++); k;
-
PARI
a(n)=my(N=n!,o=valuation(N,2),d=numdiv(N>>=o),k); while((N<<(o+k))%(d*(o+k+1))==0, k++); k \\ Charles R Greathouse IV, Jan 25 2017
Comments