A281293 Triangular array of generalized Narayana Numbers T(n,k) = 3*binomial(n+1,k)* binomial(n-3,k-1)/(n+1) for n >= 2 and 0 <= k <= n-2, read by rows.
1, 0, 3, 0, 3, 6, 0, 3, 15, 10, 0, 3, 27, 45, 15, 0, 3, 42, 126, 105, 21, 0, 3, 60, 280, 420, 210, 28, 0, 3, 81, 540, 1260, 1134, 378, 36, 0, 3, 105, 945, 3150, 4410, 2646, 630, 45, 0, 3, 132, 1540, 6930, 13860, 12936, 5544, 990, 55, 0, 3, 162, 2376, 13860, 37422, 49896, 33264, 10692, 1485, 66
Offset: 2
Examples
The triangle begins: n\k: 0 1 2 3 4 5 6 7 8 9 10 11 ... 02 : 1 03 : 0 3 04 : 0 3 6 05 : 0 3 15 10 06 : 0 3 27 45 15 07 : 0 3 42 126 105 21 08 : 0 3 60 280 420 210 28 09 : 0 3 81 540 1260 1134 378 36 10 : 0 3 105 945 3150 4410 2646 630 45 11 : 0 3 132 1540 6930 13860 12936 5544 990 55 12 : 0 3 162 2376 13860 37422 49896 33264 10692 1485 66 13 : 0 3 195 3510 25740 90090 162162 154440 77220 19305 2145 78 etc.
Links
- David Callan, Generalized Narayana Numbers
Programs
-
Mathematica
Table[3 Binomial[n + 1, k] Binomial[n - 3, k - 1]/(n + 1), {n, 2, 12}, {k, 0, n - 2}] // Flatten (* Michael De Vlieger, Jan 19 2017 *)
Formula
Row sums are A033184(n+1,3).
Comments