A281294 Refactorable numbers k such that 2*k + 1 is also a refactorable number.
3280, 6160, 8320, 51520, 99904, 174640, 386320, 541840, 883120, 1690960, 2062480, 2365312, 2688880, 2959744, 3077680, 3152560, 3274240, 5375920, 6885760, 8925312, 10030720, 11219584, 11912080, 12058960, 14370160, 15854080, 18966640, 21839440, 22038160, 24787840, 26725360
Offset: 1
Keywords
Examples
3280 is a term because 3280 = 2^4 * 5 * 41 is divisible by d(3280) = 2^2 * 5 and 2 * 3280 + 1 = 3^8 is divisible by d(3^8) = 9.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
Select[Table[2 n (n + 1), {n, 10^4}], Times @@ Boole@ Thread[Divisible[#, DivisorSigma[0, #]] &@ {#, 2 # + 1}] > 0 &] (* Michael De Vlieger, Jan 19 2017 *)
-
PARI
isA033950(n) = n % numdiv(n)== 0; is(n) = isA033950(n) && isA033950(2*n+1);
Comments