This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A281299 #10 Jan 28 2017 21:36:59 %S A281299 5011,7001,11251,22501,32303,32411,90031,101107,104123,108011,111323, %T A281299 121343,122131,124001,125101,141023,224011,233021,235003,241141, %U A281299 321203,324011,421303,432031,442201,510331,511213,520411,801011,1000183,1000541,1001191,1005223,1006231 %N A281299 Primes p whose binary representation p_2 is the decimal representation of a prime q; and also the sum of the decimal digits of p equals the sum of the digits of p_2. %C A281299 Intersection of A037308 and A065720. %e A281299 a(1) = 5011 is a prime; %e A281299 5011_2 = 1001110010011_10 is a prime; %e A281299 5 + 0 + 1 + 1 = 7; %e A281299 1 + 0 + 0 + 1 + 1 + 1 + 0 + 0 + 1 + 0 + 0 + 1 + 1 = 7; both the digit sums are equal. %t A281299 Select[Prime[Range[1000000]], PrimeQ[FromDigits[IntegerDigits[#, 2]]] && Plus @@ IntegerDigits[#] == Plus @@ IntegerDigits[FromDigits[IntegerDigits[#, 2]]] &] %o A281299 (PARI) eva(n) = subst(Pol(n), x, 10) %o A281299 is(n) = ispseudoprime(n) && ispseudoprime(eva(binary(n))) && sumdigits(n)==sumdigits(eva(binary(n))) \\ _Felix Fröhlich_, Jan 19 2017 %Y A281299 Cf. A000040, A033548, A037308, A065720, A089971. %K A281299 nonn,base %O A281299 1,1 %A A281299 _K. D. Bajpai_, Jan 19 2017