A281315 Number of 2 X 2 matrices with all elements in {0,...,n} and prime determinant.
0, 0, 13, 46, 83, 191, 272, 509, 687, 1010, 1291, 2019, 2364, 3468, 4132, 5079, 6072, 8298, 9234, 12189, 13621, 15984, 18095, 22965, 24886, 29942, 33248, 38385, 42073, 51053, 53882, 64609, 70619, 78663, 85424, 96024, 101521, 118804, 127940, 140598, 149375, 172123, 179424, 205334, 218216
Offset: 0
Keywords
Examples
For n = 3, a few of the possible matrices are [1,0;3,3], [1,1;0,2], [1,1;0,3], [1,1;1,3], [1,2;0,2], [1,2;0,3], [1,3;0,2], [1,3;0,3], [2,0;0,1], [2,0;1,1], [2,0;2,1], [2,0;3,1], [2,1;0,1], [2,1;1,2], [2,1;1,3], [3,1;3,2], [3,2;0,1], [3,2;1,3], [3,2;2,2], [3,2;2,3], ... There are 46 possibilities. Here each of the matrices M is defined as M = [a,b;c,d], where a= M[1][1], b = M[1][2], c = M[2][1] and d = M[2][2]. So, a(3) = 46.
Links
- Chai Wah Wu, Table of n, a(n) for n = 0..1000 (terms 0..186 from Indranil Ghosh)
Crossrefs
Cf. A210000.
Programs
-
Python
from sympy import isprime def t(n): s=0 for a in range(n+1): for d in range(n+1): ad = a * d for c in range(n+1): for b in range(n+1): if isprime(ad-b*c): s+=1 return s for i in range(187): print(str(i)+" "+str(t(i)))
-
Sage
def A281315(n): T = Tuples([i for i in range(n+1)], 4); i = 0 for t in T: i += is_prime(t[0]*t[3]-t[1]*t[2]) return i [A281315(n) for n in range(20)] # Peter Luschny, Jul 23 2017