This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A281316 #17 Jan 08 2025 18:36:49 %S A281316 2,3,5,13,29,41,53,73,113,149,157,173,181,197,229,233,241,293,313,317, %T A281316 349,373,397,541,557,653,661,673,733,757,769,773,797,809,857,953,977, %U A281316 1009,1033,1109,1181,1193,1217,1277,1289,1301,1433,1549,1637,1709,1733,1741,1877,1993,2029,2053,2081 %N A281316 Prime number p such that the decimal representation of its binary reflected Gray code is also a prime. %C A281316 Prime number p such that A003188(p) is in A000040. %H A281316 Indranil Ghosh, <a href="/A281316/b281316.txt">Table of n, a(n) for n = 1..10000</a> %e A281316 53 is in the sequence because the decimal representation of its binary reflected Gray code is 47 and both 53 and 47 are primes. %p A281316 q:= n-> andmap(isprime, [n, Bits[Xor](n, iquo(n, 2))]): %p A281316 select(q, [$2..3500])[]; # _Alois P. Heinz_, Jan 08 2025 %o A281316 (Python) %o A281316 from sympy import isprime %o A281316 def G(n): %o A281316 return int(bin(n^(n//2))[2:], 2) %o A281316 i=1 %o A281316 j=1 %o A281316 while j<=10000: %o A281316 if isprime(i)==True and isprime(G(i))==True: %o A281316 print(f"{j} {i}") %o A281316 j+=1 %o A281316 i+=1 %Y A281316 Cf. A000040, A003188, A281227. %K A281316 nonn,base %O A281316 1,1 %A A281316 _Indranil Ghosh_, Jan 20 2017