A281367 "Nachos" sequence based on triangular numbers.
1, 2, 3, 1, 2, 3, 4, 2, 3, 1, 2, 3, 4, 2, 3, 4, 5, 3, 4, 1, 2, 3, 4, 2, 3, 4, 5, 3, 4, 2, 3, 4, 5, 3, 1, 2, 3, 4, 2, 3, 4, 5, 3, 4, 2, 3, 4, 5, 3, 4, 5, 6, 4, 5, 2, 1, 2, 3, 4, 2, 3, 4, 5, 3, 4, 2, 3, 4, 5, 3, 4, 5, 6, 4, 5, 2, 3, 4, 5, 3, 4, 5, 6, 1, 2, 3, 4, 2, 3, 4, 5, 3, 4, 2, 3, 4, 5, 3, 4
Offset: 1
Keywords
Examples
If n = 14, in the first phase we successively remove 1, then 3, then 6 nachos, leaving 4 in the pile. The next triangular number is 10, which is bigger than 4, so we start a new phase. We remove 1, then 3 nachos, and now the pile is empty. There were two phases, so a(14)=2.
Links
- Lars Blomberg, Table of n, a(n) for n = 1..10000
- Reddit user Teblefer, Fibonachos
Crossrefs
Programs
-
Maple
S:=[seq(i*(i+1)/2,i=1..1000)]; phases := proc(n) global S; local a,h,i,j,ipass; a:=1; h:=n; for ipass from 1 to 100 do for i from 1 to 100 do j:=S[i]; if j>h then a:=a+1; break; fi; h:=h-j; if h=0 then return(a); fi; od; od; return(-1); end; t1:=[seq(phases(i),i=1..1000)]; # 2nd program A281367 := proc(n) local a,nres,i ; a := 0 ; nres := n; while nres > 0 do for i from 1 do if A000292(i) > nres then break; end if; end do: nres := nres-A000292(i-1) ; a := a+1 ; end do: a ; end proc: seq(A281367(n),n=1..80) ; # R. J. Mathar, Mar 05 2017
-
Mathematica
tri[n_] := n (n + 1) (n + 2)/6; A281367[n_] := Module[{a = 0, nres = n, i}, While[nres > 0, For[i = 1, True, i++, If[tri[i] > nres, Break[]]]; nres -= tri[i-1]; a++]; a]; Table[A281367[n], {n, 1, 99}] (* Jean-François Alcover, Apr 11 2024, after R. J. Mathar *)
Comments