This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A281373 #26 Sep 16 2018 21:40:47 %S A281373 0,1,60,1680,30280,405678,4369680,39729200,315045840,2230260741, %T A281373 14340456648,84870112272,467160257760,2411818867430,11759239565472, %U A281373 54457051387536,240692336520352,1019498573990610,4152992658207660,16319887656747248,62032458633713904,228608370781579488 %N A281373 Coefficients in q-expansion of (E_2*E_4 - E_6)^2/(300*(E_6^2-E_4^3)), where E_2, E_4, E_6 are the Eisenstein series shown in A006352, A004009, A013973, respectively. %C A281373 This is (up to a constant factor), the function phi defined in Cohn (2017) (see phi on page 114 of the Notices version). %H A281373 Vaclav Kotesovec, <a href="/A281373/b281373.txt">Table of n, a(n) for n = 0..10000</a> (terms 0..1000 from Vincenzo Librandi) %H A281373 Henry Cohn, <a href="https://arxiv.org/abs/1611.01685">A conceptual breakthrough in sphere packing</a>, arXiv preprint arXiv:1611.01685 [math.MG], 2016. %H A281373 Henry Cohn, <a href="http://www.ams.org/journals/notices/201702/rnoti-p102.pdf">A conceptual breakthrough in sphere packing</a>, Notices Amer. Math. Soc., 64:2 (2017), pp. 102-115. %F A281373 a(n) ~ exp(4*Pi*sqrt(n)) / (14400 * sqrt(2) * Pi^2 * n^(7/4)). - _Vaclav Kotesovec_, Jun 06 2018 %p A281373 with(numtheory); M:=100; %p A281373 E := proc(k) local n, t1; global M; %p A281373 t1 := 1-(2*k/bernoulli(k))*add(sigma[k-1](n)*q^n, n=1..M+1); %p A281373 series(t1, q, M+1); end; %p A281373 e2:=E(2); e4:=E(4); e6:=E(6); %p A281373 t1:=series((e2*e4-e6)^2/518400,q,M+1); %p A281373 t2:=series((e4^3-e6^2)/1728,q,M+1); %p A281373 t3:=series(t1/t2,q,M+1); %p A281373 seriestolist(t3); %t A281373 terms = 22; %t A281373 E2[x_] = 1 - 24*Sum[k*x^k/(1 - x^k), {k, 1, terms}]; %t A281373 E4[x_] = 1 + 240*Sum[k^3*x^k/(1 - x^k), {k, 1, terms}]; %t A281373 E6[x_] = 1 - 504*Sum[k^5*x^k/(1 - x^k), {k, 1, terms}]; %t A281373 (E2[x]*E4[x] - E6[x])^2/(300*(E6[x]^2 - E4[x]^3)) + O[x]^terms // CoefficientList[#, x]& // Abs (* _Jean-François Alcover_, Feb 27 2018 *) %Y A281373 Cf. A006352, A004009, A013973, A145094, A281371 (the numerator), A000594 (the denominator), A319134, A319294. %K A281373 nonn %O A281373 0,3 %A A281373 _N. J. A. Sloane_, Feb 04 2017