cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A281376 Total number of counts where floor(N/k) < floor((N+k)/n) for k = {1, 2, ..., n-1} and N >= n.

This page as a plain text file.
%I A281376 #57 Feb 03 2017 03:58:34
%S A281376 0,0,0,1,3,6,11,17,25,35,47,60,77,95,115,138,164,191,222,254,290,329,
%T A281376 370,412,460,510,562,617,676,736,802,869,940,1014,1090,1169,1255,1342,
%U A281376 1431,1523,1621,1720,1825,1931,2041,2156,2273,2391,2517,2645,2777
%N A281376 Total number of counts where floor(N/k) < floor((N+k)/n) for k = {1, 2, ..., n-1} and N >= n.
%H A281376 Jon E. Schoenfield, <a href="/A281376/b281376.txt">Table of n, a(n) for n = 1..10000</a> (terms 1..200 from Lorenz H. Menke, Jr.)
%F A281376 a(n) = Sum_{d=1..ceiling((n-3)/3)} Sum_{j=1..n-(2*d+1)} floor(j/d). - _Jon E. Schoenfield_, Jan 23 2017
%F A281376 a(n) = Sum_{d=1..ceiling(n/3)-1} ((j+1)*(j*d/2 + n mod d)), where j = floor(n/d) - 3. - _Jon E. Schoenfield_, Jan 24 2017
%e A281376 For n = 5, we have counted the cases where floor(N/k) < floor((N+k)/5), k = {1,2,3,4} then a(5) = 3, since this is true only for k = 4 and N = 6, k = 4 and N = 7, and k = 4 and N = 11.
%p A281376 A281376 := proc(n)
%p A281376     local a,k,N;
%p A281376     a := 0 ;
%p A281376     for k from 1 to n-1 do
%p A281376         for N from n do
%p A281376             if floor(N/k) < floor((N+k)/n) then
%p A281376                 a := a +1 ;
%p A281376             elif N >= (k+2*n)*k/(n-k) then
%p A281376                 break;
%p A281376             end if;
%p A281376         end do:
%p A281376     end do:
%p A281376     a ;
%p A281376 end proc:
%p A281376 seq(A281376(n),n=1..10) ; # _R. J. Mathar_, Feb 03 2017
%t A281376 a[n_] :=
%t A281376   Block[{lhs, rhs, count},
%t A281376    count = 0;
%t A281376    Do[lhs = Floor[H1/k];
%t A281376     rhs = Floor[(H1 + k)/n];
%t A281376     If[lhs < rhs, count++], {k, 1, n - 1}, {H1,
%t A281376      n, (n^2 - 3 n + 1) + 10}]; (* the 10 is simply guard counts *)
%t A281376    Return[count]];
%t A281376 a281376[n_] :=
%t A281376 Sum[Floor[j/d], {d, Ceiling[(n - 3)/3]}, {j, n - (2 d + 1)}]
%t A281376 (* _Hartmut F. W. Hoft_, Jan 25 2017; based on the first formula above *)
%o A281376 (PARI) a(n) = sum(d = 1, ceil((n-3)/3), sum(j = 1, n-(2*d+1), j\d)); \\ _Michel Marcus_, Jan 29 2017
%K A281376 nonn
%O A281376 1,5
%A A281376 _Lorenz H. Menke, Jr._, Jan 20 2017