This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A281376 #57 Feb 03 2017 03:58:34 %S A281376 0,0,0,1,3,6,11,17,25,35,47,60,77,95,115,138,164,191,222,254,290,329, %T A281376 370,412,460,510,562,617,676,736,802,869,940,1014,1090,1169,1255,1342, %U A281376 1431,1523,1621,1720,1825,1931,2041,2156,2273,2391,2517,2645,2777 %N A281376 Total number of counts where floor(N/k) < floor((N+k)/n) for k = {1, 2, ..., n-1} and N >= n. %H A281376 Jon E. Schoenfield, <a href="/A281376/b281376.txt">Table of n, a(n) for n = 1..10000</a> (terms 1..200 from Lorenz H. Menke, Jr.) %F A281376 a(n) = Sum_{d=1..ceiling((n-3)/3)} Sum_{j=1..n-(2*d+1)} floor(j/d). - _Jon E. Schoenfield_, Jan 23 2017 %F A281376 a(n) = Sum_{d=1..ceiling(n/3)-1} ((j+1)*(j*d/2 + n mod d)), where j = floor(n/d) - 3. - _Jon E. Schoenfield_, Jan 24 2017 %e A281376 For n = 5, we have counted the cases where floor(N/k) < floor((N+k)/5), k = {1,2,3,4} then a(5) = 3, since this is true only for k = 4 and N = 6, k = 4 and N = 7, and k = 4 and N = 11. %p A281376 A281376 := proc(n) %p A281376 local a,k,N; %p A281376 a := 0 ; %p A281376 for k from 1 to n-1 do %p A281376 for N from n do %p A281376 if floor(N/k) < floor((N+k)/n) then %p A281376 a := a +1 ; %p A281376 elif N >= (k+2*n)*k/(n-k) then %p A281376 break; %p A281376 end if; %p A281376 end do: %p A281376 end do: %p A281376 a ; %p A281376 end proc: %p A281376 seq(A281376(n),n=1..10) ; # _R. J. Mathar_, Feb 03 2017 %t A281376 a[n_] := %t A281376 Block[{lhs, rhs, count}, %t A281376 count = 0; %t A281376 Do[lhs = Floor[H1/k]; %t A281376 rhs = Floor[(H1 + k)/n]; %t A281376 If[lhs < rhs, count++], {k, 1, n - 1}, {H1, %t A281376 n, (n^2 - 3 n + 1) + 10}]; (* the 10 is simply guard counts *) %t A281376 Return[count]]; %t A281376 a281376[n_] := %t A281376 Sum[Floor[j/d], {d, Ceiling[(n - 3)/3]}, {j, n - (2 d + 1)}] %t A281376 (* _Hartmut F. W. Hoft_, Jan 25 2017; based on the first formula above *) %o A281376 (PARI) a(n) = sum(d = 1, ceil((n-3)/3), sum(j = 1, n-(2*d+1), j\d)); \\ _Michel Marcus_, Jan 29 2017 %K A281376 nonn %O A281376 1,5 %A A281376 _Lorenz H. Menke, Jr._, Jan 20 2017