A281392 Number of occurrences of "01" as a subsequence in the binary expansion of n.
0, 1, 1, 2, 1, 3, 2, 3, 1, 4, 3, 5, 2, 4, 3, 4, 1, 5, 4, 7, 3, 6, 5, 7, 2, 5, 4, 6, 3, 5, 4, 5, 1, 6, 5, 9, 4, 8, 7, 10, 3, 7, 6, 9, 5, 8, 7, 9, 2, 6, 5, 8, 4, 7, 6, 8, 3, 6, 5, 7, 4, 6, 5, 6, 1, 7, 6, 11, 5, 10, 9, 13, 4, 9, 8, 12, 7, 11, 10, 13, 3, 8, 7, 11, 6, 10, 9, 12, 5, 9, 8, 11, 7, 10, 9, 11, 2, 7, 6, 10, 5, 9, 8, 11, 4, 8, 7, 10, 6, 9, 8, 10, 3, 7, 6, 9, 5, 8, 7, 9, 4
Offset: 0
Keywords
Examples
For n = 5, the number of occurrences of 01 as a subsequence of 0101 is 3.
Links
- Robert Israel, Table of n, a(n) for n = 0..10000
Crossrefs
Programs
-
Maple
f:= proc(n) option remember; if n::even then procname(n/2) elif n mod 4 = 3 then - procname((n-3)/4) + 2*procname((n-1)/2) elif n mod 8 = 1 then -procname((n+3)/4) + 2*procname((n+1)/2) elif n mod 16 = 5 then -2*procname((n+3)/8) + 2*procname((n-1)/4) + procname((n+5)/2) elif n mod 16 = 13 then -procname((n-13)/16) +procname((n-5)/8) + procname((n-3)/2) fi; end proc: f(0):= 0: f(1):= 1: f(5):= 3: map(f, [$0..200]); # Robert Israel, Mar 11 2020
-
Mathematica
f[n_] := f[n] = Which[ EvenQ[n], f[n/2], Mod[n, 4] == 3, -f[(n-3)/4] + 2*f[(n-1)/2], Mod[n, 8] == 1, -f[(n+3)/4] + 2*f[(n+1)/2], Mod[n, 16] == 5, -2*f[(n+3)/8] + 2*f[(n-1)/4] + f[(n+5)/2], Mod[n, 16] == 13, -f[(n-13)/16] + f[(n-5)/8] + f[(n-3)/2]]; f[0] = 0; f[1] = 1; f[5] = 3; Map[f, Range[0, 200]] (* Jean-François Alcover, Sep 19 2022, after Robert Israel *)
Formula
Completely defined by the recurrence relations
a(2n) = a(n); a(4n+3) = -a(n) + 2a(2n+1); a(8n+1) = -a(2n+1) + 2a(4n+1); a(16n+5) = -2a(2n+1) + 2a(4n+1) + a(8n+5);
a(16n+13) = -a(n) + a(2n+1) + a(8n+5) with a(0) = 0, a(1) = 1 and a(5) = 3.
Comments