cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A281408 Lexicographically first sequence of distinct terms with the property that each triple of consecutive terms contains a term that divides the difference of the other two terms.

This page as a plain text file.
%I A281408 #11 Jan 22 2017 15:22:29
%S A281408 1,2,3,5,8,13,21,4,9,17,26,43,69,112,181,23,20,63,83,10,33,53,86,11,
%T A281408 15,37,7,6,19,25,44,94,50,22,14,36,64,28,12,16,40,24,88,32,56,120,176,
%U A281408 296,30,38,68,106,174,34,35,103,138,241,379,46,57,149,92,333
%N A281408 Lexicographically first sequence of distinct terms with the property that each triple of consecutive terms contains a term that divides the difference of the other two terms.
%H A281408 Rémy Sigrist, <a href="/A281408/b281408.txt">Table of n, a(n) for n = 1..10000</a>
%H A281408 Rémy Sigrist, <a href="/A281408/a281408.gp.txt">PARI program for A281408</a>
%e A281408 The first terms, alongside the indexes of the terms that divides the difference of the other two terms within the n-th triple of consecutive terms, are:
%e A281408    n  a(n)    Indexes
%e A281408   --  ----    -------
%e A281408    1     1    1, 2
%e A281408    2     2    1, 2
%e A281408    3     3    1, 2
%e A281408    4     5    1, 2
%e A281408    5     8    1, 2
%e A281408    6    13    3
%e A281408    7    21    2
%e A281408    8     4    1
%e A281408    9     9    1, 2
%e A281408   10    17    1, 2
%e A281408   11    26    1, 2
%e A281408   12    43    1, 2
%e A281408   13    69    1, 2
%e A281408   14   112    3
%e A281408   15   181    2
%e A281408   16    23    2
%e A281408   17    20    1, 2
%e A281408   18    63    3
%e A281408   19    83    2
%e A281408   20    10    1
%e A281408   21    33    1, 2
%e A281408   22    53    3
%e A281408   23    86    3
%e A281408   24    11    1
%e A281408   25    15    1
%Y A281408 Cf. A278962, A281409.
%K A281408 nonn
%O A281408 1,2
%A A281408 _Rémy Sigrist_, Jan 21 2017