This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A281409 #16 Jan 22 2017 21:35:40 %S A281409 5,1,2,3,4,7,9,8,10,6,14,16,12,20,28,24,13,11,15,18,21,33,27,30,19,41, %T A281409 22,25,47,36,58,50,42,23,61,31,32,63,65,64,43,85,44,91,45,17,40,57,74, %U A281409 97,51,37,60,83,106,129,152,175,109,66,35,39,82,113,133,93 %N A281409 Lexicographically first sequence of distinct terms, beginning with a(1)=5, with the property that each triple of consecutive terms contains a term that divides the sum of the other two terms. %C A281409 The initial term a(1)=5 seems to be the least one that leads to a sequence that is not ultimately linear. %C A281409 The variant with: %C A281409 - a(1)=1 matches A000027, %C A281409 - a(1)=2 matches A181440, %C A281409 - a(1)=3 starts with 3, 1, 2, and then matches A000027, %C A281409 - a(1)=4 starts with 4, 1, 2, and then matches A143097, %C A281409 - a(1)=6 starts with 6, 1, 2, 3, 4, 5, and then matches A000027, %C A281409 - a(1)=9 starts with 9, 1, 2, 3, 4, 5, 6, 7, 8, 13, 11, 12, 10, and then matches A143097. %C A281409 Conjecturally, all other variants are not ultimately linear. %H A281409 Rémy Sigrist, <a href="/A281409/b281409.txt">Table of n, a(n) for n = 1..10000</a> %H A281409 Rémy Sigrist, <a href="/A281409/a281409.gp.txt">PARI program for A281409</a> %e A281409 The first terms, alongside the indexes of the terms that divide the sum of the other two terms within the n-th triple of consecutive terms, are: %e A281409 n a(n) Indexes %e A281409 -- ---- ------- %e A281409 1 5 2, 3 %e A281409 2 1 1, 2, 3 %e A281409 3 2 2 %e A281409 4 3 3 %e A281409 5 4 1 %e A281409 6 7 3 %e A281409 7 9 1 %e A281409 8 8 1, 3 %e A281409 9 10 1, 2 %e A281409 10 6 1 %e A281409 11 14 1 %e A281409 12 16 1, 2 %e A281409 13 12 1, 2 %e A281409 14 20 3 %e A281409 15 28 3 %e A281409 16 24 1 %e A281409 17 13 1 %e A281409 18 11 1 %e A281409 19 15 2 %e A281409 20 18 1 %e A281409 21 21 3 %e A281409 22 33 3 %e A281409 23 27 3 %e A281409 24 30 1 %e A281409 25 19 2 %Y A281409 Cf. A000027, A143097, A181440, A278962, A281408. %K A281409 nonn %O A281409 1,1 %A A281409 _Rémy Sigrist_, Jan 21 2017