This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A281438 #29 Mar 02 2023 15:24:14 %S A281438 1,1,1,3,5,15,31,93,215,653,1619,4979,12949,40293,108517,341241, %T A281438 943937,2996127,8465319,27092419,77878271,251073791,732129719, %U A281438 2375764351,7012025277,22886955207,68254122669,223946197065,673885100857,2221505541773,6737598265009 %N A281438 Number of idempotents in the Kauffman monoid K_n. %C A281438 The elements of K_n are pairs (i,alpha) where i is a nonnegative integer, and alpha is an element of the Jones monoid J_n. The product in K_n is defined in the Borisavljevic-Došen-Petrić article below. %C A281438 Also the number of idempotent basis elements of the Temperley-Lieb algebra in the case the twisting parameter is not an M-th root of unity where M <= n. %H A281438 Mirjana Borisavljević, Kosta Došen, and Zoran Petrić, <a href="https://arxiv.org/abs/math/0008187">Kauffman monoids</a>, arXiv:math/0008187 [math.GT], 2000-2001; J. Knot Theory Ramifications, 11(2):127-143, 2002. %H A281438 Igor Dolinka, James East, Athanasios Evangelou, Desmond FitzGerald, Nicholas Ham, James Hyde, Nicholas Loughlin, <a href="https://arxiv.org/abs/1507.04838">Idempotent Statistics of the Motzkin and Jones Monoids</a>, arXiv:1507.04838 [math.CO], 2015-2016. %H A281438 James D. Mitchell, <a href="https://github.com/james-d-mitchell/Jones">C++ code to compute the sequence</a> %Y A281438 Cf. A225798, A281442. %K A281438 nonn %O A281438 0,4 %A A281438 _James East_, Oct 05 2017