cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A281459 Expansion of Product_{k>=1} (1 + x^(7*k-1))*(1 + x^(7*k-6)).

This page as a plain text file.
%I A281459 #6 Jan 24 2017 10:03:39
%S A281459 1,1,0,0,0,0,1,1,1,1,0,0,0,1,2,2,1,0,0,1,2,3,3,2,1,0,1,3,5,5,3,1,0,2,
%T A281459 5,7,7,5,2,1,3,7,11,11,7,3,2,5,11,15,15,11,5,3,7,15,22,22,15,7,5,11,
%U A281459 22,30,30,22,12,8,15,30,42,42,30,16,12,23,42,56
%N A281459 Expansion of Product_{k>=1} (1 + x^(7*k-1))*(1 + x^(7*k-6)).
%C A281459 Convolution of A281245 and A280457.
%H A281459 Vaclav Kotesovec, <a href="/A281459/b281459.txt">Table of n, a(n) for n = 0..10000</a>
%F A281459 a(n) ~ exp(sqrt(2*n/21)*Pi) / (2^(5/4)*21^(1/4)*n^(3/4)) * (1 + (13*Pi/(84*sqrt(42)) - 3*sqrt(21/2)/(8*Pi)) / sqrt(n)). - _Vaclav Kotesovec_, Jan 22 2017, extended Jan 24 2017
%t A281459 nmax = 100; CoefficientList[Series[Product[(1 + x^(7*k-1))*(1 + x^(7*k-6)), {k, 1, nmax}], {x, 0, nmax}], x]
%Y A281459 Cf. A035430, A281245, A280457.
%K A281459 nonn
%O A281459 0,15
%A A281459 _Vaclav Kotesovec_, Jan 22 2017