cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A281460 Expansion of Product_{k>=1} (1 + x^(7*k-2))*(1 + x^(7*k-5)).

This page as a plain text file.
%I A281460 #7 Jan 24 2017 10:05:00
%S A281460 1,0,1,0,0,1,0,1,0,1,0,1,1,0,2,0,2,1,1,2,0,3,0,3,1,2,3,1,5,0,5,2,3,5,
%T A281460 1,7,1,7,3,5,7,2,11,1,11,5,7,11,3,15,3,15,7,11,15,5,22,4,22,11,15,22,
%U A281460 8,30,7,30,15,22,30,12,42,10,42,22,30,42,17,56
%N A281460 Expansion of Product_{k>=1} (1 + x^(7*k-2))*(1 + x^(7*k-5)).
%C A281460 Convolution of A281455 and A281458.
%H A281460 Vaclav Kotesovec, <a href="/A281460/b281460.txt">Table of n, a(n) for n = 0..10000</a>
%F A281460 a(n) ~ exp(sqrt(2*n/21)*Pi) / (2^(5/4)*21^(1/4)*n^(3/4)) * (1 - (3*sqrt(21/2)/(8*Pi) + 11*Pi/(84*sqrt(42))) / sqrt(n)). - _Vaclav Kotesovec_, Jan 22 2017, extended Jan 24 2017
%t A281460 nmax = 100; CoefficientList[Series[Product[(1 + x^(7*k-2))*(1 + x^(7*k-5)), {k, 1, nmax}], {x, 0, nmax}], x]
%Y A281460 Cf. A035433, A281455, A281458.
%K A281460 nonn
%O A281460 0,15
%A A281460 _Vaclav Kotesovec_, Jan 22 2017