This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A281477 #54 Feb 08 2017 19:04:51 %S A281477 0,0,0,1,0,0,0,0,1,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,2,0,0,0,0,2, %T A281477 0,0,0,3,0,0,0,0,0,0,0,0,0,0,1,0,0,0,2,0,0,0,0,2,0,0,0,3,0,0,0,0,0,0, %U A281477 0,0,0,0,0,2,0,0,0,3,0,0,0,0,3,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 %N A281477 Expansion of Sum_{k>=1} x^(prime(k)^2)/(1 + x^(prime(k)^2)) * Product_{k>=1} (1 + x^(prime(k)^2)). %C A281477 Total number of parts in all partitions of n into distinct squares of primes (A001248). %H A281477 Robert Israel, <a href="/A281477/b281477.txt">Table of n, a(n) for n = 1..10000</a> %H A281477 Ilya Gutkovskiy, <a href="/A281477/a281477.pdf">Extended graphical example</a> %H A281477 <a href="/index/Par#partN">Index entries for related partition-counting sequences</a> %F A281477 G.f.: Sum_{k>=1} x^(prime(k)^2)/(1 + x^(prime(k)^2)) * Product_{k>=1} (1 + x^(prime(k)^2)). %e A281477 a(38) = 3 because we have [25, 9, 4]. %p A281477 Primes:= select(isprime, [$1..20]): %p A281477 g:= add(x^(p^2)/(1+x^(p^2)),p=Primes)*mul(1+x^(p^2),p=Primes): %p A281477 S:= series(g, x, 20^2+1): %p A281477 seq(coeff(S,x,n),n=1..20^2); # _Robert Israel_, Feb 08 2017 %t A281477 nmax = 125; Rest[CoefficientList[Series[Sum[x^Prime[k]^2/(1 + x^Prime[k]^2), {k, 1, nmax}] Product[1 + x^Prime[k]^2, {k, 1, nmax}], {x, 0, nmax}], x]] %Y A281477 Cf. A001248, A024938, A048261, A111900, A121518, A281449, A281542, A281668. %K A281477 nonn %O A281477 1,13 %A A281477 _Ilya Gutkovskiy_, Jan 27 2017