This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A281485 #33 Jan 31 2017 14:26:05 %S A281485 1,1,2,4,6,6,27,38,36,24,256,350,330,240,120,3125,4202,3960,3000,1800, %T A281485 720,46656,62062,58506,45360,29400,15120,5040,823543,1087214,1025388, %U A281485 806904,546000,312480,141120,40320,16777216,22024830,20781690,16524144,11493720,6985440,3598560,1451520,362880 %N A281485 Triangular array T(n,k) = k Sum_{j=0..k-1} (-1)^j binomial(k-1,j) (n-1-j)^(n-1), 1<=k<=n, read by rows. %C A281485 A parking function of size n is a sequence (a_1,...,a_n) of positive integers such that, if b_1 <= b_2 <= ... <= b_n is the increasing rearrangement of the sequence (a_1,..,a_n), then b_i <= i. %C A281485 Given a:[n]->[n], the center of a is the largest subset Z(a) = { z_1, ..., z_k } of [n] such that z_1 < z_2 < ... < z_k and a_(z_j) <= j, for every j in [k]. The length of the center of a is |Z(a)|. %C A281485 Then T(n,k)= number of parking functions of size n with center of length k. %H A281485 Rui Duarte and António Guedes de Oliveira, <a href="https://arxiv.org/abs/1611.03707">The number of parking functions with center of a given length</a>, arXiv:1611.03707 (2016). %F A281485 T(n,k) = k*Sum_{j=0..k-1} (-1)^j*binomial(k-1,j)*(n-1-j)^(n-1). %F A281485 T(n,k) = k!*Sum_{j_1+j_2+...+j_k=n-k} (n-1)^(j_1)*(n-2)^(j_2)*...*(n-k)^(j_k). %e A281485 First seven rows: %e A281485 1 %e A281485 1 2 %e A281485 4 6 6 %e A281485 27 38 36 24 %e A281485 256 350 330 240 120 %e A281485 3125 4202 3960 3000 1800 720 %e A281485 46656 62062 58506 45360 29400 15120 5040 %t A281485 Table[Which[n == k == 1, 1, k == 1, (n - 1)^(n - 1), k == n, n!, True, k Sum[(-1)^j*Binomial[k - 1, j] (n - 1 - j)^(n - 1), {j, 0, k - 1}]], {n, 9}, {k, n}] // Flatten (* _Michael De Vlieger_, Jan 23 2017 *) %Y A281485 T(n,k) = k * A174551(n-1,k-1). %Y A281485 T(n,1) = (n-1)^(n-1) = A000312(n-1). %Y A281485 T(n,n-1) = n!(n-1)/2 = A001286(n), n>=2. %Y A281485 T(n,n) = n! = A000142(n). %Y A281485 Sum_{i=1,...,n} T(n,i) = (n+1)^(n-1) = A000272(n+1). %K A281485 nonn,tabl %O A281485 1,3 %A A281485 _Rui Duarte_, Jan 22 2017