A281488 a(n) = -Sum_{d divides (n-2), 1 <= d < n} a(d).
1, -1, -1, 0, 0, 0, -1, 1, 0, -1, 0, 1, -1, 0, 0, 1, 0, -2, -1, 3, 0, -2, 1, 2, -2, -3, 1, 4, -1, -3, 0, 5, -1, -7, 1, 7, -1, -5, 0, 6, 1, -9, -2, 11, 1, -9, -1, 8, 0, -12, 0, 15, 0, -11, -1, 13, 0, -17, 1, 18, -2, -17, 1, 17, 0, -24, 0, 28, -1, -21, 0, 22
Offset: 1
Links
- Andrey Zabolotskiy, Table of n, a(n) for n = 1..20000
- Dana G. Korssjoen, Biyao Li, Stefan Steinerberger, Raghavendra Tripathi, and Ruimin Zhang, Finding structure in sequences of real numbers via graph theory: a problem list, Involve, 15 (2022), 251-270; arXiv preprint, arXiv:2012.04625 [math.CO], 2020-2021.
Crossrefs
Programs
-
Python
a = [1] for n in range(2, 100): a.append(-sum(a[d-1] for d in range(1, n) if (n-2)%d == 0)) print(a)
Formula
a(1) = 1, a(n) = -Sum_{d|(n-2), 1 <= d < n} a(d) for n>1.
Comments