This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A281499 #9 May 22 2025 10:21:45 %S A281499 1,0,0,2,4,0,2,6,12,4,0,8,10,2,6,14,28,12,4,20,16,0,8,24,26,10,2,18, %T A281499 22,6,14,30,60,28,12,44,36,4,20,52,48,16,0,32,40,8,24,56,58,26,10,42, %U A281499 34,2,18,50,54,22,6,38,46,14,30,62,124,60,28,92,76,12,44,108,100,36,4,68,84,20,52,116,112,48,16,80,64,0,32,96,104,40,8,72,88,24,56,120 %N A281499 Write n in binary reflected Gray code, interchange the 1's and 0's, reverse the code and convert it back to decimal. %H A281499 Indranil Ghosh, <a href="/A281499/b281499.txt">Table of n, a(n) for n = 0..10000</a> %F A281499 a(n) = A036044(A003188(n)). %e A281499 For n = 11, the binary reflected Gray code for 11 is '1110' which after interchanging the 1's and 0's becomes '0001', which on reversing further gives '1000'. Now, 1000_2 = 8_10. So, a(11) = 8. %t A281499 Table[FromDigits[Reverse@ IntegerDigits[#, 2] &@ BitXor[n, Floor[n/2]] /. { 0 -> 1, 1 -> 0}, 2], {n, 0, 120}] (* _Michael De Vlieger_, Jan 23 2017 *) %o A281499 (Python) %o A281499 def G(n): %o A281499 return bin(n^(n/2))[2:] %o A281499 def a(n): %o A281499 s="" %o A281499 x=G(n) %o A281499 for i in x: %o A281499 if i=="1":s+="0" %o A281499 else:s+="1" %o A281499 s=s[::-1] %o A281499 return int(s,2) %Y A281499 Cf. A003188, A014550, A036044. %K A281499 nonn,base %O A281499 0,4 %A A281499 _Indranil Ghosh_, Jan 23 2017