cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A281511 The lexicographically earliest sequence of positive integers such that for all k >= j >= 1, if a(n) = a(n + j) = a(n + k) then a(n + j + k) != a(n).

Original entry on oeis.org

1, 1, 2, 1, 2, 2, 3, 1, 3, 2, 4, 3, 1, 4, 4, 2, 5, 3, 3, 4, 1, 4, 5, 2, 5, 5, 6, 6, 7, 5, 1, 3, 2, 4, 6, 3, 6, 7, 7, 5, 6, 7, 8, 4, 1, 8, 8, 2, 9, 7, 3, 5, 6, 8, 9, 6, 7, 9, 4, 8, 10, 9, 9, 2, 10, 1, 3, 5, 8, 10, 10, 4, 6, 7, 11, 11, 12, 9, 7, 9, 1, 10, 11, 2
Offset: 1

Views

Author

Peter Kagey, Apr 13 2017

Keywords

Comments

Indices of ones are given by A005282.
Conjecture: For all positive i, j, k there exists some n such that a(n) = a(n + j) = a(n + k) = i.
Also, if a(k)=a(j) for any kMarc Morgenegg, May 31 2024

Examples

			For n=1 through n=7, the terms are as follows:
a(1) = 1;
a(2) = 1;
a(3) != 1 because a(1) = a(1+1) = a(1+1) so a(1+1+1) != a(1);
a(3) = 2, the least value such that satisfies the sequence condition;
a(4) = 1;
a(5) != 1 because a(1) = a(1+1) = a(1+3) so a(1+1+3) != a(1);
a(5) = 2, the least value such that satisfies the sequence condition;
a(6) != 1 because a(2) = a(2+2) = a(2+2) so a(2+2+2) != a(2);
a(6) = 2, the least value such that satisfies the sequence condition;
a(7) != 1 because a(1) = a(1+3) = a(1+3) so a(1+3+3) != a(1);
a(7) != 2 because a(3) = a(3+2) = a(3+2) so a(3+2+2) != a(3);
a(7) = 3, the least value such that satisfies the sequence condition.
		

Crossrefs

Cf. A005282.