This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A281551 #21 Jun 13 2025 22:43:44 %S A281551 3,23,41,47,59,89,101,149,179,227,317,347,353,383,389,479,503,599,821, %T A281551 887,929,977,1019,1109,1229,1283,1319,1511,1571,1619,1667,1709,1733, %U A281551 1787,1847,1889,1907,1913,1931,2207,2309,2333,2357,2399,2417,2459,2609,2753,2789,2909,2963,2999,3203,3257,3299 %N A281551 Prime numbers p such that the decimal representation of its Elias gamma code is also a prime. %H A281551 Indranil Ghosh, <a href="/A281551/b281551.txt">Table of n, a(n) for n = 1..2014</a> %e A281551 59 is in the sequence because the decimal representation of its Elias gamma code is 2011 and both 59 and 2011 are prime numbers. %o A281551 (Python) %o A281551 import math %o A281551 from sympy import isprime %o A281551 def unary(n): %o A281551 return "1"*(n-1)+"0" %o A281551 def elias_gamma(n): %o A281551 if n ==1: %o A281551 return "1" %o A281551 k=int(math.log(n,2)) %o A281551 fp=unary(1+k) #fp is the first part %o A281551 sp=n-2**(k) #sp is the second part %o A281551 nb=k #nb is the number of bits used to store sp in binary %o A281551 sp=bin(sp)[2:] %o A281551 if len(sp)<nb: %o A281551 sp=("0"*(nb-len(sp)))+sp %o A281551 return int(fp+sp,2) %o A281551 i=1 %o A281551 j=1 %o A281551 while j<=2014: %o A281551 if isprime(i)==True and isprime(elias_gamma(i))==True: %o A281551 print(str(j)+" "+str(i)) %o A281551 j+=1 %o A281551 i+=1 %Y A281551 Cf. A000040, A171885 (decimal representation of Elias gamma code), A281149, A281316. %K A281551 nonn,base %O A281551 1,1 %A A281551 _Indranil Ghosh_, Jan 24 2017