cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A281574 Number of geometric lattices on n nodes.

This page as a plain text file.
%I A281574 #31 Aug 30 2022 14:25:26
%S A281574 1,1,0,1,1,1,1,2,1,2,1,3,2,2,3,5,3,4,5,6,6,8,9,16,16,21,29,45,50,95,
%T A281574 136,220,392,680,1270,2530,4991
%N A281574 Number of geometric lattices on n nodes.
%C A281574 A finite lattice is geometric if it is semimodular and atomistic. Atomistic (or atomic in Stanley's terminology) means that every element is a join of some atoms; or equivalently, that every join-irreducible element is an atom.
%C A281574 a(n) is the number of simple matroids with n flats, up to isomorphism. - _Harry Richman_, Jul 27 2022
%H A281574 J. Kohonen, <a href="http://arxiv.org/abs/1708.03750">Generating modular lattices up to 30 elements</a>, arXiv:1708.03750 [math.CO], 2017-2018.
%H A281574 M. Malandro, <a href="http://www.shsu.edu/mem037/Lattices.html">The unlabeled lattices on <=15 nodes</a>, (listing of lattices; geometric lattices are a subset of these).
%H A281574 Wikipedia, <a href="https://en.wikipedia.org/wiki/Geometric_lattice">Geometric lattice</a>
%e A281574 From _Peter Luschny_, Jan 24 2017: (Start)
%e A281574 The only two geometric lattices on 8 nodes:
%e A281574             7
%e A281574           / | \
%e A281574          /  |  \            _ _ 7_ _
%e A281574          3  5  6           / / /\ \ \
%e A281574          |\/ \/|          / / /  \ \ \
%e A281574          |/\ /\|         1 2 3    4 5 6
%e A281574          1  2  4          \ \ \  / / /
%e A281574           \ | /            \_\_\/_/_/
%e A281574            \|/                  0
%e A281574             0
%e A281574 (End)
%Y A281574 Cf. A229202 (semimodular lattices).
%K A281574 nonn,more,hard
%O A281574 1,8
%A A281574 _Jukka Kohonen_, Jan 24 2017
%E A281574 a(16)-a(34) from Kohonen (2017), by _Jukka Kohonen_, Aug 15 2017
%E A281574 a(35)-a(37) by _Jukka Kohonen_, Jul 07 2020