cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A281592 Products of three distinct primes p1, p2 and p3 (sphenic numbers) with p1 and p3 is the concatenation of p1 with p2.

This page as a plain text file.
%I A281592 #18 Apr 15 2017 09:58:53
%S A281592 138,777,4642,10258,10263,12207,13282,16167,19762,30783,37407,38482,
%T A281592 46978,48927,56127,60145,63543,73767,81687,89823,95367,95627,103863,
%U A281592 110905,115527,128545,202705,208879,223643,284119,324947,325793,360151,395003,477538,541163,558322,585538,672199,673693,780082,914551,1016643
%N A281592 Products of three distinct primes p1, p2 and p3 (sphenic numbers) with p1<p2 and p3 is the concatenation of p1 with p2.
%e A281592 10258 is in the sequence because 10258 = 2*23*223 and 223 is the concatenation of 2 with 23.
%t A281592 c[x_, y_] := x 10^IntegerLength[y] + y; upto[mx_] := Sort@ Reap[Block[{p=2, q=3, v=1}, While[v <= mx, While[p < q && (v = p q (r = c[p, q])) <= mx, If[PrimeQ@r, Sow@v]; p = NextPrime[p]]; p=2; q = NextPrime[q]; v = p q c[p, q]]]][[2, 1]]; upto[10^6] (* _Giovanni Resta_, Apr 14 2017 *)
%o A281592 (PARI) isok(n) = f = factor(n); ((#f~ == 3) && (vecmax(f[,2]) == 1) && (f[3,1] == fromdigits(concat(digits(f[1,1]), digits(f[2,1]))))); \\ _Michel Marcus_, Apr 14 2017
%Y A281592 Cf. A007304, A133980 (the p3 primes).
%K A281592 nonn,base
%O A281592 1,1
%A A281592 _Peter Weiss_, Apr 14 2017