This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A281593 #54 Jan 01 2025 18:13:39 %S A281593 1,1,3,11,41,153,573,2157,8163,31043,118559,454479,1747771,6740059, %T A281593 26055459,100939779,391785129,1523230569,5931153429,23126146629, %U A281593 90282147849,352846964649,1380430179489,5405662979649,21186405207549,83101804279101,326199124351701 %N A281593 a(n) = b(n) - Sum_{j=0..n-1} b(j) with b(n) = binomial(2*n, n). %H A281593 Indranil Ghosh, <a href="/A281593/b281593.txt">Table of n, a(n) for n = 0..1000</a> %F A281593 a(n) = [x^n] (2*x-1)/(sqrt(1-4*x)*(x-1)). %F A281593 a(n) = binomial(2*n,n)*(1+hypergeom([1,n+1/2],[n+1],4))+I/sqrt(3). %F A281593 a(n+1) = a(n) + 2*n*Catalan(n). %F A281593 a(n) ~ (4/3)*4^n/sqrt((8*n+2)*Pi/2). %F A281593 D-finite with recurrence n*a(n) +(-7*n+6)*a(n-1) +2*(7*n-13)*a(n-2) +4*(-2*n+5)*a(n-3)=0. - _R. J. Mathar_, Jul 27 2022 %F A281593 E.g.f.: exp(2*x)*BesselI(0,2*x) - exp(x)*integral( BesselI(0,2*x)*exp(x) ) dx. - _Mélika Tebni_, Feb 27 2024 %p A281593 b := n -> binomial(2*n, n): s := n -> add(b(j), j=0..n): %p A281593 a := n -> b(n) - s(n-1): seq(a(n), n=0..26); %p A281593 # second program: %p A281593 A281593 := series(exp(2*x)*BesselI(0, 2*x) - exp(x)*int(BesselI(0, 2*x)*exp(x), x), x = 0, 27): seq(n!*coeff(A281593, x, n), n=0..26); # _Mélika Tebni_, Feb 27 2024 %t A281593 a[n_] = Binomial[2n,n](1+Hypergeometric2F1[1,n+1/2,n+1,4])+I/Sqrt[3]; %t A281593 Table[Simplify[a[n]],{n,0,17}] %t A281593 CoefficientList[Series[(2x -1)/((x -1) Sqrt[(1 -4x)]), {x, 0, 26}], x] (* _Robert G. Wilson v_, Feb 25 2017 *) %t A281593 a[0]=1; a[n_]:=a[n-1] + 2*(n-1)*CatalanNumber[n-1];Table[a[n],{n,0,26}] (* _Indranil Ghosh_, Mar 03 2017 *) %o A281593 (Sage) %o A281593 def A(): %o A281593 a = b = c = 1 %o A281593 yield 1 %o A281593 while True: %o A281593 yield a %o A281593 c = (c * (4 * b - 2)) // (b + 1) %o A281593 a += 2 * b * c %o A281593 b += 1 %o A281593 a = A(); print([next(a) for _ in (0..25)]) # _Peter Luschny_, Feb 25 2017 %o A281593 (PARI) a(n) = binomial(2*n,n)-sum(j=0,n-1,binomial(2*j,j)); \\ _Indranil Ghosh_, Mar 03 2017 %o A281593 (PARI) c(n) = binomial(2*n,n)/(n+1); %o A281593 a(n) = if(n==0,1,a(n-1) + 2*(n-1)*c(n-1)); \\ _Indranil Ghosh_, Mar 03 2017 %o A281593 (Python) %o A281593 import math %o A281593 def C(n,r): return f(n)/f(r)/f(n-r) %o A281593 def A281593(n): %o A281593 s=0 %o A281593 for j in range(0,n): %o A281593 s+=C(2*j,j) %o A281593 return C(2*n,n)-s # _Indranil Ghosh_, Mar 03 2017 %Y A281593 A279561(n) = (a(n)+1)/2. %Y A281593 A057552(n) = (a(n+2)-1)/2. %Y A281593 A162551(n) = a(n+1)-a(n). %Y A281593 Cf. A000984, A006134, A279557. %K A281593 nonn %O A281593 0,3 %A A281593 _Peter Luschny_, Feb 25 2017