This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A281611 #4 Jan 27 2017 13:05:52 %S A281611 0,0,0,1,1,2,3,7,10,16,23,36,50,73,100,144,193,267,355,481,631,838, %T A281611 1088,1426,1833,2368,3019,3861,4879,6178,7751,9737,12131,15120,18721, %U A281611 23181,28535,35110,42991,52606,64090,78015,94609,114621,138398,166927,200737,241131,288864,345649,412592,491931 %N A281611 Expansion of Sum_{p prime, i>=2} x^(p^i)/(1 - x^(p^i)) / Product_{j>=1} (1 - x^j). %C A281611 Total number of proper prime power parts (A246547) in all partitions of n. %H A281611 <a href="/index/Par#partN">Index entries for related partition-counting sequences</a> %F A281611 G.f.: Sum_{p prime, i>=2} x^(p^i)/(1 - x^(p^i)) / Product_{j>=1} (1 - x^j). %F A281611 a(n) = A073335(n) - A037032(n). %e A281611 a(6) = 2 because we have [6], [5, 1], [4, 2], [4, 1, 1], [3, 3], [3, 2, 1], [3, 1, 1, 1], [2, 2, 2], [2, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1] and 0 + 0 + 1 + 1 + 0 + 0 + 0 + 0 + 0 + 0 + 0 = 2. %t A281611 nmax = 52; Rest[CoefficientList[Series[Sum[Sign[PrimeOmega[i] - 1] Floor[1/PrimeNu[i]] x^i/(1 - x^i), {i, 2, nmax}]/Product[1 - x^j, {j, 1, nmax}], {x, 0, nmax}], x]] %Y A281611 Cf. A000041, A037032, A073335, A246547. %K A281611 nonn %O A281611 1,6 %A A281611 _Ilya Gutkovskiy_, Jan 25 2017