cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A281613 Expansion of Sum_{i>=1} x^(i^3)/(1 - x^(i^3)) / Product_{j>=1} (1 - x^(j^3)).

This page as a plain text file.
%I A281613 #8 Sep 26 2019 08:09:07
%S A281613 1,2,3,4,5,6,7,9,11,13,15,17,19,21,23,27,30,33,36,39,42,45,48,54,58,
%T A281613 62,67,72,77,82,87,96,102,108,116,123,130,137,144,156,164,172,183,192,
%U A281613 201,210,219,234,244,254,268,279,290,303,315,334,347,360,378,392,406,423,438,462,479,496,519,537,555,577
%N A281613 Expansion of Sum_{i>=1} x^(i^3)/(1 - x^(i^3)) / Product_{j>=1} (1 - x^(j^3)).
%C A281613 Total number of parts in all partitions of n into cubes.
%C A281613 Convolution of A003108 and A061704.
%H A281613 <a href="/index/Par#partN">Index entries for related partition-counting sequences</a>
%F A281613 G.f.: Sum_{i>=1} x^(i^3)/(1 - x^(i^3)) / Product_{j>=1} (1 - x^(j^3)).
%e A281613 a(9) = 11 because we have [8, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1] and 2 + 9 = 11.
%t A281613 nmax = 70; Rest[CoefficientList[Series[Sum[x^i^3/(1 - x^i^3), {i, 1, nmax}]/Product[1 - x^j^3, {j, 1, nmax}], {x, 0, nmax}], x]]
%Y A281613 Cf. A000578, A003108, A061704, A281541.
%K A281613 nonn
%O A281613 1,2
%A A281613 _Ilya Gutkovskiy_, Jan 25 2017