This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A281618 #20 Jan 28 2017 13:50:21 %S A281618 1,2,3,5,8,34,144,610,1134903170 %N A281618 Fibonacci numbers F such that all the prime factors of F^2 + 1 are also Fibonacci numbers. %C A281618 The corresponding indices of F are 1 or 2, 3, 4, 5, 6, 9, 12, 15, 45, ... and A245236 is in this sequence. %e A281618 a(9)^2+1 = Fibonacci(45)^2+1 = 1134903170^2+1 = 1288005205276048901 = 433494437 * 2971215073 = Fibonacci(43)*Fibonacci(47). %p A281618 with(numtheory):with(combinat,fibonacci):nn:=100: %p A281618 for n from 1 to nn do: %p A281618 f:=fibonacci(n)^2+1:x:=factorset(f):n0:=nops(x):it:=0: %p A281618 for m from 1 to n0 do: %p A281618 c:=x[m]: %p A281618 x1:=sqrt(5*c^2-4):x2:=sqrt(5*c^2+4): %p A281618 if x1=floor(x1) or x2=floor(x2) %p A281618 then %p A281618 it:=it+1: %p A281618 else %p A281618 fi: %p A281618 od: %p A281618 if it=n0 then print(fibonacci(n)):else fi:od: %t A281618 With[{s = Rest@ Fibonacci@ Range@ 120}, Select[s, Times @@ Boole@ Map[MemberQ[s, #] &, FactorInteger[#^2 + 1][[All, 1]]] > 0 &]] (* _Michael De Vlieger_, Jan 27 2017 *) %o A281618 (PARI) isfib(n) = my(k=n^2); k+=(k+1)<<2; issquare(k) || (n>0 && issquare(k-8)); %o A281618 isokf(n) = {my(f = factor(fibonacci(n)^2+1)); for (k=1, #f~, if (!isfib(f[k,1]), return(0));); return(1);} %o A281618 for (n=2, 50, if (isokf(n), print1(fibonacci(n), ", "))) \\ _Michel Marcus_, Jan 28 2017 %Y A281618 Cf. A000045, A245306, A245236. %K A281618 nonn,more %O A281618 1,2 %A A281618 _Michel Lagneau_, Jan 25 2017