This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A281620 #46 Apr 06 2020 15:57:46 %S A281620 1,7,1,67,13,1,821,181,21,1,12281,2906,406,31,1,217015,53719,8359,799, %T A281620 43,1,4424071,1129899,188707,20637,1429,57,1,102207817,26710345, %U A281620 4690249,561481,45385,2377,73,1,2639010709,701908264,127951984,16349374,1469026,91216,3736,91,1 %N A281620 Triangle read by rows: Poincaré polynomials of orbifold of Fermat hypersurfaces. %H A281620 So Okada, <a href="https://arxiv.org/abs/0910.2014">Homological mirror symmetry of Fermat polynomials</a>, arxiv:0910.2014 [math.AG], 2009-2010. %F A281620 The formula given by Okada needs to be corrected as follows: %F A281620 Sum_{j=0..n-1} Sum_{i=0..n-1-j} n^j * binomial(n,j) * (-1)^(i+n+j) * binomial(n-2-j+1,i+1) * q^i. %F A281620 From _Peter Luschny_, Jan 26 2017: (Start) %F A281620 T(n,k) = [x^k] Sum_{j=0..n-1} t(j, n) for n>=2 and 0<=k<=n-2 with t(j,n) = (-1)^(j+n)*binomial(n,j)*(1-(1-x)^(n-1-j))*x^(-1)*n^j. %F A281620 T(n,k) = [x^k] ((-n-x+1)^n+(x-1)*(1-n)^n-(-n)^n*x)*(-1)^n/((x-1)*x). (End) %e A281620 The first few polynomials are 1; q + 7; q^2 + 13*q + 67; ... %e A281620 Triangle begins: %e A281620 1; %e A281620 7, 1; %e A281620 67, 13, 1; %e A281620 821, 181, 21, 1; %e A281620 12281, 2906, 406, 31, 1; %e A281620 217015, 53719, 8359, 799, 43, 1; %e A281620 4424071, 1129899, 188707, 20637, 1429, 57, 1; %e A281620 ... %p A281620 T:= n-> (p-> seq(coeff(p, q, i), i=0..n-2))(add(add(n^j* %p A281620 binomial(n, j)*(-1)^(i+n+j)*binomial(n-2-j+1, i+1)* %p A281620 q^i, i=0..n-1-j), j=0..n-1)): %p A281620 seq(T(n), n=2..10); # _Alois P. Heinz_, Jan 25 2017 %p A281620 # Alternatively: %p A281620 t := n -> factor(((-n-x+1)^n+(x-1)*(1-n)^n-(-n)^n*x)*(-1)^n/((x-1)*x)): %p A281620 seq(seq(coeff(t(n),x,k),k=0..n-2),n=2..10); # _Peter Luschny_, Jan 26 2017 %t A281620 T[n_] := ((-n-x+1)^n+(x-1)(1-n)^n-(-n)^n x) (-1)^n/((x-1) x); Table[CoefficientList[T[n],x],{n,2,10}] // Flatten (* _Peter Luschny_, Jan 26 2017 *) %o A281620 (Sage) %o A281620 def fermat(n): %o A281620 q = polygen(ZZ, 'q') %o A281620 return sum(n**j * binomial(n, j) * (-1)**(i + n + j) * %o A281620 binomial(n - 2 - j + 1, i + 1) * q**i %o A281620 for j in range(n - 1) %o A281620 for i in range(n - 1 - j)) %o A281620 (Sage) # Alternatively: %o A281620 def A281620_row(n): %o A281620 x = polygen(ZZ, 'x') %o A281620 p = (((-n-x+1)^n + (x-1)*(1-n)^n - (-n)^n*x)*(-1)^n)//((x-1)*x) %o A281620 return p.list() %o A281620 for n in (2..10): print(A281620_row(n)) # _Peter Luschny_, Jan 26 2017 %Y A281620 Row sums give A007778(n-1), alternating row sums are A281596. %K A281620 nonn,tabl %O A281620 2,2 %A A281620 _F. Chapoton_, Jan 25 2017