This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A281665 #19 Jan 31 2017 21:19:37 %S A281665 159,283,377,502,503,603,615,668,669,670,799,807,888,890,892,893,1063, %T A281665 1065,1095,1186,1187,1188,1189,1190,1417,1435,1580,1581,1582,1585, %U A281665 1586,1587,1889,1913,1947,1959,1963,2104,2106,2108,2109,2113,2114,2115,2119,2518 %N A281665 Numbers m such that A006667(m)/A006577(m) = 1/3. %C A281665 A006667: number of tripling steps to reach 1 in '3x+1' problem. %C A281665 A006577: number of halving and tripling steps to reach 1 in '3x+1' problem. %C A281665 The corresponding number of iterations A006577(a(n)) is given by the sequence 54, 60, 63, 66, 66, 69, 69, 69, 69, 69, 72, 72, 72, 72, 72, 72, 75, 75, ... and the set of the distinct values of this sequence is {b(n)} = {54, 60, 63, 66, 69, 72, 75, 78, 81, 84, 87, 90, 93, 96, 99, 102, 105, 108, 111, 114, 117, 120, ...}. We observe that {b(k)} = {54} union {60 + 3*k} for k = 1, 2, ... %H A281665 <a href="/index/3#3x1">Index entries for sequences related to 3x+1 (or Collatz) problem</a> %e A281665 159 is in the sequence because A006667(159)/A006577(159) = 18/54 = 1/3. %p A281665 nn:=10000: %p A281665 for n from 2 to 3000 do: %p A281665 m:=n:s1:=0:s2:=0: %p A281665 for i from 1 to nn while(m<>1) do: %p A281665 if irem(m,2)=0 %p A281665 then %p A281665 s2:=s2+1:m:=m/2: %p A281665 else %p A281665 s1:=s1+1:m:=3*m+1: %p A281665 fi: %p A281665 od: %p A281665 s:=s1/(s1+s2): %p A281665 if s=1/3 %p A281665 then %p A281665 printf(`%d, `,n): %p A281665 else %p A281665 fi: %p A281665 od: %Y A281665 Cf. A006577, A006666, A006667. %K A281665 nonn %O A281665 1,1 %A A281665 _Michel Lagneau_, Jan 31 2017