cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A281668 Expansion of Sum_{p prime, i>=1} x^(p^i)/(1 + x^(p^i)) * Product_{p prime, j>=1} (1 + x^(p^j)).

This page as a plain text file.
%I A281668 #4 Jan 27 2017 13:07:07
%S A281668 0,1,1,1,3,2,5,3,8,7,10,12,13,20,18,26,25,36,34,45,47,59,62,71,82,91,
%T A281668 105,112,132,143,163,174,201,220,244,266,298,327,362,388,437,470,521,
%U A281668 558,621,671,733,788,864,938,1011,1100,1182,1295,1379,1501,1606,1753,1861,2017,2158,2335,2493,2672,2871,3078
%N A281668 Expansion of Sum_{p prime, i>=1} x^(p^i)/(1 + x^(p^i)) * Product_{p prime, j>=1} (1 + x^(p^j)).
%C A281668 Total number of parts in all partitions of n into distinct prime power parts (1 excluded).
%H A281668 <a href="/index/Par#partN">Index entries for related partition-counting sequences</a>
%F A281668 G.f.: Sum_{p prime, i>=1} x^(p^i)/(1 + x^(p^i)) * Product_{p prime, j>=1} (1 + x^(p^j)).
%e A281668 a(10) = 7 because we have [8, 2], [7, 3], [5, 3, 2] and 2 + 2 + 3 = 7.
%t A281668 nmax = 66; Rest[CoefficientList[Series[Sum[Floor[1/PrimeNu[i]] x^i/(1 + x^i), {i, 2, nmax}] Product[1 + Floor[1/PrimeNu[j]] x^j, {j, 2, nmax}], {x, 0, nmax}], x]]
%Y A281668 Cf. A015723, A024938, A054685, A246655, A281616.
%K A281668 nonn
%O A281668 1,5
%A A281668 _Ilya Gutkovskiy_, Jan 26 2017