This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A281678 #36 May 27 2025 10:34:19 %S A281678 3,7,8,33,43,77,93,272,332,662,7757,31333 %N A281678 Numbers k that have no digits in common with k^7. %C A281678 All terms have last digit 2, 3, 7 or 8. %C A281678 Sequence is likely to be finite. If it exists, a(13) > 10^7. %C A281678 In this sequence, the only terms with no repeated digits are 3, 7, 8, 43, 93. - _Altug Alkan_, Jan 26 2017 %C A281678 If it exists, a(13) > 10^17. - _David Radcliffe_, May 26 2025 %e A281678 43 is a term because 43^7 = 271818611107 has no digit 4 or 3. %p A281678 select(t -> convert(convert(t,base,10),set) intersect convert(convert(t^7,base,10),set) = {}, %p A281678 {seq(seq(10*i+j,j=[2,3,7,8]),i=0..10^4}); %t A281678 Select[Range[40000], Intersection[IntegerDigits[#], IntegerDigits[ #^7]] == {}&] (* _Vincenzo Librandi_, Jan 27 2017 *) %o A281678 (PARI) isok(n) = #setintersect(Set(digits(n)), Set(digits(n^7))) == 0; \\ _Michel Marcus_, Jan 26 2017 %Y A281678 Cf. A001015. Contains A253576. %Y A281678 Cf. A281148. %K A281678 nonn,more,base %O A281678 1,1 %A A281678 _Robert Israel_, Jan 26 2017