cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A281710 Number of n X 3 0..1 arrays with no element unequal to a strict majority of its horizontal, diagonal and antidiagonal neighbors and with new values introduced in order 0 sequentially upwards.

Original entry on oeis.org

1, 7, 8, 14, 17, 22, 30, 43, 64, 98, 153, 242, 386, 619, 996, 1606, 2593, 4190, 6774, 10955, 17720, 28666, 46377, 75034, 121402, 196427, 317820, 514238, 832049, 1346278, 2178318, 3524587, 5702896, 9227474, 14930361, 24157826, 39088178
Offset: 1

Views

Author

R. H. Hardin, Jan 28 2017

Keywords

Examples

			Some solutions for n=4:
..0..0..0. .0..0..0. .0..0..1. .0..0..1. .0..1..1. .0..0..1. .0..1..0
..1..1..1. .0..0..0. .0..1..0. .0..1..0. .1..0..1. .0..1..0. .1..0..1
..1..1..1. .0..0..0. .1..0..1. .1..0..1. .0..1..0. .1..0..1. .0..1..0
..1..1..1. .1..1..1. .0..1..1. .0..1..0. .0..0..1. .1..1..0. .1..0..1
		

Crossrefs

Column 3 of A281715.

Formula

Empirical: a(n) = 2*a(n-1) - a(n-3) for n>6.
Empirical g.f.: x*(1 + 5*x - 6*x^2 - x^3 - 4*x^4 - 4*x^5) / ((1 - x)*(1 - x - x^2)). - Colin Barker, Feb 20 2019

A281711 Number of nX4 0..1 arrays with no element unequal to a strict majority of its horizontal, diagonal and antidiagonal neighbors and with new values introduced in order 0 sequentially upwards.

Original entry on oeis.org

2, 14, 38, 97, 245, 631, 1625, 4234, 11017, 28652, 74521, 193836, 504195, 1311543, 3411786, 8875377, 23088294, 60062126, 156247057, 406466099, 1057396975, 2750760479, 7155964344, 18615901819, 48428431650, 125984478749, 327743372244
Offset: 1

Views

Author

R. H. Hardin, Jan 28 2017

Keywords

Comments

Column 4 of A281715.

Examples

			Some solutions for n=4
..0..0..1..1. .0..0..1..1. .0..0..1..0. .0..0..1..1. .0..0..0..1
..0..0..1..1. .0..1..1..1. .0..1..0..1. .0..1..1..1. .0..0..1..0
..0..1..0..1. .0..0..1..1. .1..0..1..0. .0..0..1..1. .0..1..0..1
..1..0..1..0. .0..0..1..1. .0..1..0..1. .0..0..0..0. .1..0..1..0
		

Crossrefs

Cf. A281715.

Formula

Empirical: a(n) = 4*a(n-1) -2*a(n-2) -4*a(n-3) -2*a(n-4) +a(n-5) +7*a(n-6) +a(n-7) -10*a(n-8) -a(n-9) +27*a(n-10) -8*a(n-11) -18*a(n-12) +8*a(n-13) +a(n-14) -3*a(n-15) for n>16

A281712 Number of nX5 0..1 arrays with no element unequal to a strict majority of its horizontal, diagonal and antidiagonal neighbors and with new values introduced in order 0 sequentially upwards.

Original entry on oeis.org

3, 29, 90, 294, 937, 3166, 10738, 37285, 129586, 452042, 1578499, 5515546, 19279612, 67403955, 235679364, 824104430, 2881741245, 10077105830, 35238715476, 123227200603, 430917662802, 1506893871278, 5269524537393, 18427245321410
Offset: 1

Views

Author

R. H. Hardin, Jan 28 2017

Keywords

Comments

Column 5 of A281715.

Examples

			Some solutions for n=4
..0..1..0..0..0. .0..0..0..1..1. .0..0..0..0..0. .0..0..1..1..1
..1..0..1..1..1. .0..0..1..1..1. .0..0..0..1..1. .0..0..1..1..1
..0..1..1..1..1. .0..1..0..1..1. .1..1..1..1..1. .0..1..1..1..1
..0..0..1..1..1. .1..0..1..0..0. .1..1..1..1..1. .0..0..1..1..1
		

Crossrefs

Cf. A281715.

Formula

Empirical: a(n) = 5*a(n-1) -2*a(n-2) -9*a(n-3) -17*a(n-4) +18*a(n-5) +45*a(n-6) +5*a(n-7) -46*a(n-8) -14*a(n-9) +102*a(n-10) -101*a(n-11) +167*a(n-12) -132*a(n-13) -151*a(n-14) +2*a(n-15) -214*a(n-16) +40*a(n-17) -115*a(n-18) -55*a(n-19) -37*a(n-20) -17*a(n-21) -2*a(n-22) -15*a(n-23) +4*a(n-24) for n>28

A281713 Number of n X 6 0..1 arrays with no element unequal to a strict majority of its horizontal, diagonal and antidiagonal neighbors and with new values introduced in order 0 sequentially upwards.

Original entry on oeis.org

5, 61, 305, 1410, 6417, 29849, 142023, 677045, 3244671, 15605137, 75182105, 362888403, 1753298751, 8477268701, 41008602681, 198445489556, 960526983294, 4649943139886, 22512991046486, 109006244562077, 527827316883602
Offset: 1

Views

Author

R. H. Hardin, Jan 28 2017

Keywords

Comments

Column 6 of A281715.

Examples

			Some solutions for n=4
..0..1..0..1..1..1. .0..1..1..1..0..0. .0..0..0..0..0..1. .0..0..0..1..1..1
..1..0..1..0..1..1. .1..0..1..0..1..0. .1..1..1..1..1..0. .0..0..0..1..1..1
..1..1..0..0..0..0. .0..1..0..1..0..1. .1..1..1..1..0..1. .0..0..0..1..1..1
..1..1..1..0..0..0. .1..0..0..0..1..0. .0..0..0..0..1..0. .0..0..1..1..1..1
		

Crossrefs

Cf. A281715.

A281714 Number of n X 7 0..1 arrays with no element unequal to a strict majority of its horizontal, diagonal and antidiagonal neighbors and with new values introduced in order 0 sequentially upwards.

Original entry on oeis.org

8, 126, 902, 5781, 37781, 252867, 1721319, 11737418, 80326035, 550174620, 3770023291, 25852784618, 177312917355, 1216400299609, 8345678370420, 57264137432807, 392941243651302, 2696425337315332, 18503762711566377
Offset: 1

Views

Author

R. H. Hardin, Jan 28 2017

Keywords

Comments

Column 7 of A281715.

Examples

			Some solutions for n=4
..0..0..1..1..1..0..0. .0..0..0..1..1..1..1. .0..0..1..0..1..0..0
..0..0..0..1..1..0..0. .1..1..1..0..0..0..0. .0..1..0..1..0..1..0
..0..0..1..1..0..1..0. .1..1..1..0..0..0..0. .1..0..1..0..1..0..1
..1..1..0..0..1..0..1. .0..0..0..1..1..1..1. .1..1..0..1..0..1..0
		

Crossrefs

Cf. A281715.

A281716 Number of 2 X n 0..1 arrays with no element unequal to a strict majority of its horizontal, diagonal and antidiagonal neighbors and with new values introduced in order 0 sequentially upwards.

Original entry on oeis.org

2, 3, 7, 14, 29, 61, 126, 265, 553, 1162, 2441, 5141, 10846, 22921, 48529, 102914, 218617, 465133, 991158, 2115193, 4520361, 9673530, 20728009, 44469637, 95515790, 205383337, 442086081, 952519602, 2054191833, 4433875101, 9578060710
Offset: 1

Views

Author

R. H. Hardin, Jan 28 2017

Keywords

Examples

			Some solutions for n=4:
..0..0..1..1. .0..0..1..0. .0..1..1..1. .0..1..1..0. .0..1..0..0
..0..1..1..1. .1..1..0..1. .1..0..0..0. .1..0..0..1. .1..0..1..1
		

Crossrefs

Row 2 of A281715.

Formula

Empirical: a(n) = 3*a(n-1) + a(n-2) - 6*a(n-3) - 2*a(n-4) + 4*a(n-5).
Empirical g.f.: x*(2 - 3*x - 4*x^2 + 2*x^3 + 2*x^4) / ((1 - 2*x)*(1 - x - 3*x^2 + 2*x^4)). - Colin Barker, Feb 20 2019

A281717 Number of 3 X n 0..1 arrays with no element unequal to a strict majority of its horizontal, diagonal and antidiagonal neighbors and with new values introduced in order 0 sequentially upwards.

Original entry on oeis.org

4, 4, 8, 38, 90, 305, 902, 2710, 8376, 25226, 77145, 235122, 715882, 2186483, 6666846, 20353268, 62140942, 189739429, 579567532, 1770391431, 5409031357, 16528102350, 50508922108, 154369025240, 471828803722, 1442250315610, 4408832591287
Offset: 1

Views

Author

R. H. Hardin, Jan 28 2017

Keywords

Comments

Row 3 of A281715.

Examples

			Some solutions for n=4
..0..0..0..1. .0..0..0..0. .0..1..0..0. .0..0..1..1. .0..0..1..0
..0..0..1..0. .1..1..1..1. .1..0..1..0. .0..0..1..1. .0..1..0..1
..1..1..0..1. .1..1..1..1. .0..1..0..1. .1..1..0..0. .1..0..1..0
		

Crossrefs

Cf. A281715.

Formula

Empirical: a(n) = 3*a(n-1) +8*a(n-2) -16*a(n-3) -46*a(n-4) +39*a(n-5) +121*a(n-6) -66*a(n-7) -185*a(n-8) +78*a(n-9) +216*a(n-10) -71*a(n-11) -182*a(n-12) +51*a(n-13) +107*a(n-14) -24*a(n-15) -43*a(n-16) +7*a(n-17) +10*a(n-18) -a(n-19) -a(n-20) for n>21.

A281718 Number of 4Xn 0..1 arrays with no element unequal to a strict majority of its horizontal, diagonal and antidiagonal neighbors and with new values introduced in order 0 sequentially upwards.

Original entry on oeis.org

8, 6, 14, 97, 294, 1410, 5781, 23798, 103034, 429701, 1822286, 7734672, 32650303, 138610834, 587182558, 2488856940, 10558553240, 44771374413, 189944049261, 805892553288, 3419413103710, 14511303192013, 61585052285760
Offset: 1

Views

Author

R. H. Hardin, Jan 28 2017

Keywords

Comments

Row 4 of A281715.

Examples

			Some solutions for n=4
..0..1..0..1. .0..1..1..1. .0..0..0..1. .0..1..0..0. .0..0..0..0
..1..0..1..0. .1..0..0..0. .0..0..1..0. .1..0..1..0. .0..0..1..1
..0..1..0..1. .1..1..0..0. .0..1..0..1. .0..1..0..1. .1..1..1..1
..1..0..1..1. .1..1..1..0. .1..0..1..1. .1..0..1..0. .1..1..1..1
		

Crossrefs

Cf. A281715.

Formula

Empirical recurrence of order 72 (see link above)

A281719 Number of 5Xn 0..1 arrays with no element unequal to a strict majority of its horizontal, diagonal and antidiagonal neighbors and with new values introduced in order 0 sequentially upwards.

Original entry on oeis.org

16, 9, 17, 245, 937, 6417, 37781, 214045, 1321909, 7709401, 45858679, 274481652, 1621718293, 9681714758, 57586120717, 342417879408, 2040527424639, 12140992057625, 72295270999213, 430542760825365, 2563358199717255
Offset: 1

Views

Author

R. H. Hardin, Jan 28 2017

Keywords

Comments

Row 5 of A281715.

Examples

			Some solutions for n=4
..0..0..0..0. .0..0..0..1. .0..1..0..1. .0..0..1..1. .0..0..1..1
..0..0..0..0. .0..0..1..0. .1..0..1..0. .0..0..1..1. .0..1..1..1
..0..0..0..0. .0..1..0..1. .1..1..0..0. .1..1..0..0. .0..0..1..1
..0..0..1..1. .1..0..1..0. .1..1..0..0. .1..1..0..0. .0..0..1..1
..0..1..1..1. .0..1..0..1. .1..0..0..0. .1..1..1..0. .0..0..0..1
		

Crossrefs

Cf. A281715.

A281720 Number of 6Xn 0..1 arrays with no element unequal to a strict majority of its horizontal, diagonal and antidiagonal neighbors and with new values introduced in order 0 sequentially upwards.

Original entry on oeis.org

32, 14, 22, 631, 3166, 29849, 252867, 1987696, 17241122, 141964135, 1181349593, 9947080570, 82516604643, 691237888796, 5774613619314, 48180216720264, 403021368941890, 3365534946520453, 28122510061436727, 235052865949118652
Offset: 1

Views

Author

R. H. Hardin, Jan 28 2017

Keywords

Comments

Row 6 of A281715.

Examples

			Some solutions for n=4
..0..0..1..1. .0..0..1..1. .0..0..1..1. .0..1..1..1. .0..0..1..1
..0..1..1..1. .1..1..0..0. .0..0..1..1. .0..0..1..1. .0..0..1..1
..0..0..1..1. .1..1..0..0. .1..1..0..0. .0..0..1..1. .0..1..1..1
..0..0..1..1. .1..1..0..0. .1..1..0..0. .0..0..1..1. .0..0..1..1
..0..0..1..1. .1..0..0..0. .1..1..0..0. .0..0..1..1. .0..0..1..1
..0..1..1..1. .0..1..1..1. .1..1..1..0. .0..0..1..1. .0..0..1..1
		

Crossrefs

Cf. A281715.
Showing 1-10 of 12 results. Next