This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A281747 #34 Aug 08 2025 14:21:32 %S A281747 5,26,1068,82681,5392282366,11356596271444,34451905517028761171, %T A281747 340625514346676110671584,308318432223607315018221180590, %U A281747 8566187045843934976180705488213013173127,1099862052702774330481800364074681495062836757,8170421001593885871548404108552563632485969048059688187 %N A281747 Smallest b > 1 such that p = prime(n) satisfies b^(p-1) == 1 (mod p^p). %C A281747 a(n) is the element in row prime(n), column n of the table in A257833. %C A281747 Is the sequence always nondecreasing, or stronger, is it always increasing? %C A281747 For odd primes p, if c is a primitive root mod p^p then b == c^(p^(p-1)) (mod p^p) satisfies this. Thus a(n) < prime(n)^prime(n) for n > 1. - _Robert Israel_, Jan 30 2017 %H A281747 Robert Israel, <a href="/A281747/b281747.txt">Table of n, a(n) for n = 1..76</a> %H A281747 W. Keller and J. Richstein, <a href="https://doi.org/10.1090/S0025-5718-04-01666-7">Solutions of the congruence a^(p-1) == 1 (mod p^r)</a>, Math. Comp. 74 (2005), 927-936. %p A281747 f:= proc(p) local c,j; %p A281747 c:= numtheory:-primroot(p^p); %p A281747 min(seq(c &^ (j*p^(p-1)) mod p^p, j=1..p-2)) %p A281747 end proc: %p A281747 5, seq(f(ithprime(i)),i=2..15); # _Robert Israel_, Jan 30 2017 %t A281747 Table[b = 2; While[PowerMod[b, (# - 1), #^#] &@ Prime@ n != 1, b++]; b, {n, 4}] (* _Michael De Vlieger_, Jan 30 2017 *) %o A281747 (PARI) a(n) = my(p=prime(n), b=2); while(Mod(b, p^p)^(p-1)!=1, b++); b %Y A281747 Cf. A257833. %K A281747 nonn,hard %O A281747 1,1 %A A281747 _Felix Fröhlich_, Jan 29 2017 %E A281747 More terms from _Robert Israel_, Jan 30 2017